L(s) = 1 | + (5.52 − 1.20i)2-s + 27.7i·3-s + (29.0 − 13.3i)4-s + 87.4i·5-s + (33.4 + 153. i)6-s + 14.3·7-s + (144. − 108. i)8-s − 524.·9-s + (105. + 483. i)10-s + 121i·11-s + (369. + 806. i)12-s − 1.11e3i·13-s + (79.3 − 17.3i)14-s − 2.42e3·15-s + (668. − 775. i)16-s + 621.·17-s + ⋯ |
L(s) = 1 | + (0.976 − 0.213i)2-s + 1.77i·3-s + (0.908 − 0.416i)4-s + 1.56i·5-s + (0.379 + 1.73i)6-s + 0.110·7-s + (0.799 − 0.601i)8-s − 2.16·9-s + (0.333 + 1.52i)10-s + 0.301i·11-s + (0.740 + 1.61i)12-s − 1.82i·13-s + (0.108 − 0.0236i)14-s − 2.78·15-s + (0.652 − 0.757i)16-s + 0.521·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.601 - 0.799i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.601 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.42121 + 2.84734i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42121 + 2.84734i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-5.52 + 1.20i)T \) |
| 11 | \( 1 - 121iT \) |
good | 3 | \( 1 - 27.7iT - 243T^{2} \) |
| 5 | \( 1 - 87.4iT - 3.12e3T^{2} \) |
| 7 | \( 1 - 14.3T + 1.68e4T^{2} \) |
| 13 | \( 1 + 1.11e3iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 621.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 1.62e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 347.T + 6.43e6T^{2} \) |
| 29 | \( 1 - 6.69e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 4.17e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 2.86e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 8.04e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 7.98iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.20e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 3.03e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 4.54e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 1.50e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 5.45e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 3.67e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 6.69e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 5.08e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 2.73e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 3.79e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.39e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.07741244219839483633177875919, −12.39308815821939827506466164569, −11.01100882751841993775207078926, −10.52983920971765982221677991501, −9.856785279536924089491111052713, −7.77764615229428414226736175769, −6.12081856469558954720890463325, −5.06529690327472957451691854272, −3.56412003365314640074468874806, −2.93450171597297694895497969418,
1.00226201721253096254576755810, 2.22116710447067547731816720419, 4.46048144018899305126159337938, 5.79905640734739380907013857101, 6.87934936454240257387138394435, 7.988302411453230029174596360128, 8.985240515270715793168417272829, 11.62058143174802958725968231402, 11.92783860062008264505474411874, 13.05176408955907850462479680345