Properties

Label 2-88-11.4-c5-0-14
Degree $2$
Conductor $88$
Sign $-0.678 - 0.734i$
Analytic cond. $14.1137$
Root an. cond. $3.75683$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (8.12 − 24.9i)3-s + (−45.3 + 32.9i)5-s + (23.8 + 73.4i)7-s + (−362. − 263. i)9-s + (−391. − 87.7i)11-s + (−517. − 376. i)13-s + (454. + 1.40e3i)15-s + (−405. + 294. i)17-s + (−784. + 2.41e3i)19-s + 2.02e3·21-s + 2.71e3·23-s + (4.24 − 13.0i)25-s + (−4.34e3 + 3.15e3i)27-s + (750. + 2.30e3i)29-s + (−5.14e3 − 3.74e3i)31-s + ⋯
L(s)  = 1  + (0.520 − 1.60i)3-s + (−0.810 + 0.589i)5-s + (0.184 + 0.566i)7-s + (−1.48 − 1.08i)9-s + (−0.975 − 0.218i)11-s + (−0.849 − 0.617i)13-s + (0.522 + 1.60i)15-s + (−0.340 + 0.247i)17-s + (−0.498 + 1.53i)19-s + 1.00·21-s + 1.06·23-s + (0.00135 − 0.00417i)25-s + (−1.14 + 0.833i)27-s + (0.165 + 0.509i)29-s + (−0.962 − 0.699i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.678 - 0.734i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(88\)    =    \(2^{3} \cdot 11\)
Sign: $-0.678 - 0.734i$
Analytic conductor: \(14.1137\)
Root analytic conductor: \(3.75683\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{88} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 88,\ (\ :5/2),\ -0.678 - 0.734i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0566032 + 0.129329i\)
\(L(\frac12)\) \(\approx\) \(0.0566032 + 0.129329i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + (391. + 87.7i)T \)
good3 \( 1 + (-8.12 + 24.9i)T + (-196. - 142. i)T^{2} \)
5 \( 1 + (45.3 - 32.9i)T + (965. - 2.97e3i)T^{2} \)
7 \( 1 + (-23.8 - 73.4i)T + (-1.35e4 + 9.87e3i)T^{2} \)
13 \( 1 + (517. + 376. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (405. - 294. i)T + (4.38e5 - 1.35e6i)T^{2} \)
19 \( 1 + (784. - 2.41e3i)T + (-2.00e6 - 1.45e6i)T^{2} \)
23 \( 1 - 2.71e3T + 6.43e6T^{2} \)
29 \( 1 + (-750. - 2.30e3i)T + (-1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (5.14e3 + 3.74e3i)T + (8.84e6 + 2.72e7i)T^{2} \)
37 \( 1 + (1.40e3 + 4.32e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
41 \( 1 + (-519. + 1.59e3i)T + (-9.37e7 - 6.80e7i)T^{2} \)
43 \( 1 + 1.83e4T + 1.47e8T^{2} \)
47 \( 1 + (-9.06e3 + 2.78e4i)T + (-1.85e8 - 1.34e8i)T^{2} \)
53 \( 1 + (1.82e4 + 1.32e4i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (-8.88e3 - 2.73e4i)T + (-5.78e8 + 4.20e8i)T^{2} \)
61 \( 1 + (3.40e3 - 2.47e3i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 + 5.80e4T + 1.35e9T^{2} \)
71 \( 1 + (5.48e3 - 3.98e3i)T + (5.57e8 - 1.71e9i)T^{2} \)
73 \( 1 + (2.35e4 + 7.23e4i)T + (-1.67e9 + 1.21e9i)T^{2} \)
79 \( 1 + (-2.47e4 - 1.79e4i)T + (9.50e8 + 2.92e9i)T^{2} \)
83 \( 1 + (6.73e4 - 4.89e4i)T + (1.21e9 - 3.74e9i)T^{2} \)
89 \( 1 - 337.T + 5.58e9T^{2} \)
97 \( 1 + (1.08e5 + 7.86e4i)T + (2.65e9 + 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59173564770046536141878381666, −11.77391690697701155120353423589, −10.51488678889143864641215221832, −8.642626011839606183486773157393, −7.79463311640551560166936870044, −7.05810253509184550727415672546, −5.59349725029573681811929667052, −3.23922554523837044738828942180, −2.02916998347618740046893548654, −0.05056494678035260321289440613, 2.88582358132626936409288066861, 4.47346619297873953534210600627, 4.83708930855897141949639549640, 7.30596275270851914646619559520, 8.559470257112027520569834698922, 9.432707210188969873461390152002, 10.56610792517740712190999419985, 11.39695826429126281677678154548, 12.87628810554672596740066384492, 14.10247036209719952396789231969

Graph of the $Z$-function along the critical line