L(s) = 1 | + (−1.70 + 1.70i)3-s + (−0.707 + 2.12i)5-s + (2.12 − 2.12i)7-s − 2.82i·9-s + (1.41 − 3i)11-s + (−3 − 3i)13-s + (−2.41 − 4.82i)15-s + (5.12 − 5.12i)17-s − 3·19-s + 7.24i·21-s + (0.171 − 0.171i)23-s + (−3.99 − 3i)25-s + (−0.292 − 0.292i)27-s + 1.24·29-s + 7.24·31-s + ⋯ |
L(s) = 1 | + (−0.985 + 0.985i)3-s + (−0.316 + 0.948i)5-s + (0.801 − 0.801i)7-s − 0.942i·9-s + (0.426 − 0.904i)11-s + (−0.832 − 0.832i)13-s + (−0.623 − 1.24i)15-s + (1.24 − 1.24i)17-s − 0.688·19-s + 1.58i·21-s + (0.0357 − 0.0357i)23-s + (−0.799 − 0.600i)25-s + (−0.0563 − 0.0563i)27-s + 0.230·29-s + 1.30·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.979511 - 0.102578i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.979511 - 0.102578i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 - 2.12i)T \) |
| 11 | \( 1 + (-1.41 + 3i)T \) |
good | 3 | \( 1 + (1.70 - 1.70i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.12 + 2.12i)T - 7iT^{2} \) |
| 13 | \( 1 + (3 + 3i)T + 13iT^{2} \) |
| 17 | \( 1 + (-5.12 + 5.12i)T - 17iT^{2} \) |
| 19 | \( 1 + 3T + 19T^{2} \) |
| 23 | \( 1 + (-0.171 + 0.171i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.24T + 29T^{2} \) |
| 31 | \( 1 - 7.24T + 31T^{2} \) |
| 37 | \( 1 + (-0.121 - 0.121i)T + 37iT^{2} \) |
| 41 | \( 1 - 1.75iT - 41T^{2} \) |
| 43 | \( 1 + (-1.24 - 1.24i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.41 + 4.41i)T + 47iT^{2} \) |
| 53 | \( 1 + (-9.53 + 9.53i)T - 53iT^{2} \) |
| 59 | \( 1 + 1.41iT - 59T^{2} \) |
| 61 | \( 1 - 7.24iT - 61T^{2} \) |
| 67 | \( 1 + (-4 - 4i)T + 67iT^{2} \) |
| 71 | \( 1 - 1.24T + 71T^{2} \) |
| 73 | \( 1 + (6 + 6i)T + 73iT^{2} \) |
| 79 | \( 1 - 10.2T + 79T^{2} \) |
| 83 | \( 1 + (7.24 + 7.24i)T + 83iT^{2} \) |
| 89 | \( 1 - 5.48iT - 89T^{2} \) |
| 97 | \( 1 + (2.24 + 2.24i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28579926623106580827191754703, −9.739427736940178006268992287345, −8.281741812066952630818560613144, −7.54194834985726014603808613973, −6.60204485530820920592888676283, −5.58055815458882746690506514246, −4.81062179527218342776315664922, −3.88836829419800040627736164487, −2.85678901668547518258239522610, −0.62036459299959450696983813829,
1.24991673074454479787185590456, 2.08347937076167921290407390038, 4.17178525684872472893920718355, 4.99417860622411293642445655385, 5.79639053376877714650266302284, 6.67724260205588079154329630437, 7.64086308166406628007243959183, 8.314864136182213212673839239709, 9.237136504161169172891030396134, 10.20600342620145185713160874130