L(s) = 1 | + (−1.70 + 1.70i)3-s + (−0.707 + 2.12i)5-s + (2.12 − 2.12i)7-s − 2.82i·9-s + (1.41 − 3i)11-s + (−3 − 3i)13-s + (−2.41 − 4.82i)15-s + (5.12 − 5.12i)17-s − 3·19-s + 7.24i·21-s + (0.171 − 0.171i)23-s + (−3.99 − 3i)25-s + (−0.292 − 0.292i)27-s + 1.24·29-s + 7.24·31-s + ⋯ |
L(s) = 1 | + (−0.985 + 0.985i)3-s + (−0.316 + 0.948i)5-s + (0.801 − 0.801i)7-s − 0.942i·9-s + (0.426 − 0.904i)11-s + (−0.832 − 0.832i)13-s + (−0.623 − 1.24i)15-s + (1.24 − 1.24i)17-s − 0.688·19-s + 1.58i·21-s + (0.0357 − 0.0357i)23-s + (−0.799 − 0.600i)25-s + (−0.0563 − 0.0563i)27-s + 0.230·29-s + 1.30·31-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(0.978+0.207i)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)(0.978+0.207i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
0.978+0.207i
|
Analytic conductor: |
7.02683 |
Root analytic conductor: |
2.65081 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(417,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 880, ( :1/2), 0.978+0.207i)
|
Particular Values
L(1) |
≈ |
0.979511−0.102578i |
L(21) |
≈ |
0.979511−0.102578i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.707−2.12i)T |
| 11 | 1+(−1.41+3i)T |
good | 3 | 1+(1.70−1.70i)T−3iT2 |
| 7 | 1+(−2.12+2.12i)T−7iT2 |
| 13 | 1+(3+3i)T+13iT2 |
| 17 | 1+(−5.12+5.12i)T−17iT2 |
| 19 | 1+3T+19T2 |
| 23 | 1+(−0.171+0.171i)T−23iT2 |
| 29 | 1−1.24T+29T2 |
| 31 | 1−7.24T+31T2 |
| 37 | 1+(−0.121−0.121i)T+37iT2 |
| 41 | 1−1.75iT−41T2 |
| 43 | 1+(−1.24−1.24i)T+43iT2 |
| 47 | 1+(4.41+4.41i)T+47iT2 |
| 53 | 1+(−9.53+9.53i)T−53iT2 |
| 59 | 1+1.41iT−59T2 |
| 61 | 1−7.24iT−61T2 |
| 67 | 1+(−4−4i)T+67iT2 |
| 71 | 1−1.24T+71T2 |
| 73 | 1+(6+6i)T+73iT2 |
| 79 | 1−10.2T+79T2 |
| 83 | 1+(7.24+7.24i)T+83iT2 |
| 89 | 1−5.48iT−89T2 |
| 97 | 1+(2.24+2.24i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28579926623106580827191754703, −9.739427736940178006268992287345, −8.281741812066952630818560613144, −7.54194834985726014603808613973, −6.60204485530820920592888676283, −5.58055815458882746690506514246, −4.81062179527218342776315664922, −3.88836829419800040627736164487, −2.85678901668547518258239522610, −0.62036459299959450696983813829,
1.24991673074454479787185590456, 2.08347937076167921290407390038, 4.17178525684872472893920718355, 4.99417860622411293642445655385, 5.79639053376877714650266302284, 6.67724260205588079154329630437, 7.64086308166406628007243959183, 8.314864136182213212673839239709, 9.237136504161169172891030396134, 10.20600342620145185713160874130