L(s) = 1 | − 3-s − 4·7-s − 2·9-s + 11-s + 2·13-s − 2·19-s + 4·21-s − 9·23-s + 5·27-s + 4·29-s + 5·31-s − 33-s + 9·37-s − 2·39-s + 2·41-s + 6·43-s + 4·47-s + 9·49-s + 6·53-s + 2·57-s − 5·59-s + 8·63-s + 13·67-s + 9·69-s − 71-s − 14·73-s − 4·77-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.51·7-s − 2/3·9-s + 0.301·11-s + 0.554·13-s − 0.458·19-s + 0.872·21-s − 1.87·23-s + 0.962·27-s + 0.742·29-s + 0.898·31-s − 0.174·33-s + 1.47·37-s − 0.320·39-s + 0.312·41-s + 0.914·43-s + 0.583·47-s + 9/7·49-s + 0.824·53-s + 0.264·57-s − 0.650·59-s + 1.00·63-s + 1.58·67-s + 1.08·69-s − 0.118·71-s − 1.63·73-s − 0.455·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 + 9 T + p T^{2} \) |
| 29 | \( 1 - 4 T + p T^{2} \) |
| 31 | \( 1 - 5 T + p T^{2} \) |
| 37 | \( 1 - 9 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 5 T + p T^{2} \) |
| 61 | \( 1 + p T^{2} \) |
| 67 | \( 1 - 13 T + p T^{2} \) |
| 71 | \( 1 + T + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 + 10 T + p T^{2} \) |
| 83 | \( 1 + 14 T + p T^{2} \) |
| 89 | \( 1 + 13 T + p T^{2} \) |
| 97 | \( 1 - 19 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.26683014515804870088473640151, −6.47403761879072340454833956046, −6.01837595750888220501847386226, −5.74946095778526844140813240550, −4.46831868068078995331138597775, −3.94175282223449699498584754910, −3.01160891288422488476225632870, −2.39109142945467425549358195090, −0.953783651147144954390488231984, 0,
0.953783651147144954390488231984, 2.39109142945467425549358195090, 3.01160891288422488476225632870, 3.94175282223449699498584754910, 4.46831868068078995331138597775, 5.74946095778526844140813240550, 6.01837595750888220501847386226, 6.47403761879072340454833956046, 7.26683014515804870088473640151