L(s) = 1 | − 8·2-s + 36·4-s − 120·8-s − 8·11-s + 330·16-s + 64·22-s − 4·23-s + 16·25-s − 4·29-s − 792·32-s + 32·37-s + 28·43-s − 288·44-s + 32·46-s − 128·50-s − 20·53-s + 32·58-s + 1.71e3·64-s − 72·67-s − 48·71-s − 256·74-s + 16·79-s + 9·81-s − 224·86-s + 960·88-s − 144·92-s + 576·100-s + ⋯ |
L(s) = 1 | − 5.65·2-s + 18·4-s − 42.4·8-s − 2.41·11-s + 82.5·16-s + 13.6·22-s − 0.834·23-s + 16/5·25-s − 0.742·29-s − 140.·32-s + 5.26·37-s + 4.26·43-s − 43.4·44-s + 4.71·46-s − 18.1·50-s − 2.74·53-s + 4.20·58-s + 214.5·64-s − 8.79·67-s − 5.69·71-s − 29.7·74-s + 1.80·79-s + 81-s − 24.1·86-s + 102.·88-s − 15.0·92-s + 57.5·100-s + ⋯ |
Λ(s)=(=((28⋅316⋅716)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((28⋅316⋅716)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.06984646392 |
L(21) |
≈ |
0.06984646392 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T)8 |
| 3 | 1−p2T4+p4T8 |
| 7 | 1 |
good | 5 | 1−16T2+29pT4−976T6+5296T8−976p2T10+29p5T12−16p6T14+p8T16 |
| 11 | (1+4T+2T2−32T3−101T4−32pT5+2p2T6+4p3T7+p4T8)2 |
| 13 | (1−20T2+231T4−20p2T6+p4T8)2 |
| 17 | 1−16T2−194T4+2048T6+44995T8+2048p2T10−194p4T12−16p6T14+p8T16 |
| 19 | 1−72T2+3169T4−93096T6+2058480T8−93096p2T10+3169p4T12−72p6T14+p8T16 |
| 23 | (1+2T+5T2−94T3−620T4−94pT5+5p2T6+2p3T7+p4T8)2 |
| 29 | (1+2T−52T2−4T3+2179T4−4pT5−52p2T6+2p3T7+p4T8)2 |
| 31 | (1+8T2+p2T4)4 |
| 37 | (1−8T+27T2−8pT3+p2T4)4 |
| 41 | (1−50T2+819T4−50p2T6+p4T8)2 |
| 43 | (1−14T+88T2−308T3+1387T4−308pT5+88p2T6−14p3T7+p4T8)2 |
| 47 | (1+76T2+4662T4+76p2T6+p4T8)2 |
| 53 | (1+10T−28T2+220T3+8275T4+220pT5−28p2T6+10p3T7+p4T8)2 |
| 59 | (1−8T2−2430T4−8p2T6+p4T8)2 |
| 61 | (1+216T2+19079T4+216p2T6+p4T8)2 |
| 67 | (1+18T+188T2+18pT3+p2T4)4 |
| 71 | (1+12T+151T2+12pT3+p2T4)4 |
| 73 | 1−180T2+14842T4−1242000T6+107225523T8−1242000p2T10+14842p4T12−180p6T14+p8T16 |
| 79 | (1−4T+15T2−4pT3+p2T4)4 |
| 83 | (1−68T2−2265T4−68p2T6+p4T8)2 |
| 89 | 1+80T2−9314T4−10240T6+133493155T8−10240p2T10−9314p4T12+80p6T14+p8T16 |
| 97 | 1−372T2+85018T4−12851856T6+1457345619T8−12851856p2T10+85018p4T12−372p6T14+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.51612564643574825928855110575, −4.30424711503623088028217870070, −4.09051029625363667770854670515, −3.80657966632598295180111133303, −3.77122631588711922113128629313, −3.51822023304080917422853131159, −3.14502808738321113603691671305, −3.09262777402254045510598126952, −2.97426478016247542695006481187, −2.84803711208535615590004090211, −2.82291491530787779788584744884, −2.72796142768427488678440137426, −2.60306195195237913732946795167, −2.56809068636433414786694054518, −2.25614119793965932513469746377, −2.01268948403321958875719025800, −1.77474860615799703809459296091, −1.74046208870896397572591369528, −1.48740179396304525610555277719, −1.35733940898393730287615998155, −1.12493508923873528824968270482, −0.912002545428551141285855067777, −0.69178018853338750252696877068, −0.45682979462238907134217828964, −0.16408342159455284089235721150,
0.16408342159455284089235721150, 0.45682979462238907134217828964, 0.69178018853338750252696877068, 0.912002545428551141285855067777, 1.12493508923873528824968270482, 1.35733940898393730287615998155, 1.48740179396304525610555277719, 1.74046208870896397572591369528, 1.77474860615799703809459296091, 2.01268948403321958875719025800, 2.25614119793965932513469746377, 2.56809068636433414786694054518, 2.60306195195237913732946795167, 2.72796142768427488678440137426, 2.82291491530787779788584744884, 2.84803711208535615590004090211, 2.97426478016247542695006481187, 3.09262777402254045510598126952, 3.14502808738321113603691671305, 3.51822023304080917422853131159, 3.77122631588711922113128629313, 3.80657966632598295180111133303, 4.09051029625363667770854670515, 4.30424711503623088028217870070, 4.51612564643574825928855110575
Plot not available for L-functions of degree greater than 10.