L(s) = 1 | − 2-s + (0.448 + 1.67i)3-s + 4-s + (0.258 − 0.448i)5-s + (−0.448 − 1.67i)6-s − 8-s + (−2.59 + 1.50i)9-s + (−0.258 + 0.448i)10-s + (0.732 + 1.26i)11-s + (0.448 + 1.67i)12-s + (−1.22 − 2.12i)13-s + (0.866 + 0.232i)15-s + 16-s + (−1.74 + 3.01i)17-s + (2.59 − 1.50i)18-s + (0.258 + 0.448i)19-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.258 + 0.965i)3-s + 0.5·4-s + (0.115 − 0.200i)5-s + (−0.183 − 0.683i)6-s − 0.353·8-s + (−0.866 + 0.5i)9-s + (−0.0818 + 0.141i)10-s + (0.220 + 0.382i)11-s + (0.129 + 0.482i)12-s + (−0.339 − 0.588i)13-s + (0.223 + 0.0599i)15-s + 0.250·16-s + (−0.422 + 0.731i)17-s + (0.612 − 0.353i)18-s + (0.0593 + 0.102i)19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.810−0.585i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.810−0.585i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.810−0.585i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(655,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.810−0.585i)
|
Particular Values
L(1) |
≈ |
0.251271+0.777053i |
L(21) |
≈ |
0.251271+0.777053i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+(−0.448−1.67i)T |
| 7 | 1 |
good | 5 | 1+(−0.258+0.448i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.732−1.26i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.22+2.12i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.74−3.01i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.258−0.448i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3.96−6.86i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.36−2.36i)T+(−14.5−25.1i)T2 |
| 31 | 1+7.34T+31T2 |
| 37 | 1+(−4−6.92i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.82−4.89i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−6.09+10.5i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.62T+47T2 |
| 53 | 1+(3.36−5.83i)T+(−26.5−45.8i)T2 |
| 59 | 1+14.7T+59T2 |
| 61 | 1+4.38T+61T2 |
| 67 | 1+3.80T+67T2 |
| 71 | 1+0.803T+71T2 |
| 73 | 1+(−2.31+4.00i)T+(−36.5−63.2i)T2 |
| 79 | 1−14.1T+79T2 |
| 83 | 1+(4.94−8.57i)T+(−41.5−71.8i)T2 |
| 89 | 1+(8.05+13.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+(0.517−0.896i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43646891986034301497745765608, −9.373367344682364316645992086725, −9.182938975454976298962256430038, −8.032637924608084753047677428695, −7.39961425398731947774732745916, −6.04210811784696792828134057470, −5.25279053466382495883594220176, −4.09051029625363667770854670515, −3.09262777402254045510598126952, −1.74046208870896397572591369528,
0.45682979462238907134217828964, 2.01268948403321958875719025800, 2.82291491530787779788584744884, 4.30424711503623088028217870070, 5.84797457069924971107875099266, 6.53912735587648309434833705249, 7.33440240416787074848018807083, 8.065083631831219895704612513250, 9.003747607866980150421314205214, 9.483632590333182667649512398054