L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.933 + 1.45i)3-s + (−0.499 + 0.866i)4-s + (−0.230 + 0.398i)5-s + (0.796 − 1.53i)6-s + 0.999·8-s + (−1.25 + 2.72i)9-s + 0.460·10-s + (1.82 + 3.15i)11-s + (−1.73 + 0.0789i)12-s + (−0.730 + 1.26i)13-s + (−0.796 + 0.0363i)15-s + (−0.5 − 0.866i)16-s − 3.73·17-s + (2.98 − 0.273i)18-s − 4.05·19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.538 + 0.842i)3-s + (−0.249 + 0.433i)4-s + (−0.102 + 0.178i)5-s + (0.325 − 0.627i)6-s + 0.353·8-s + (−0.419 + 0.907i)9-s + 0.145·10-s + (0.549 + 0.952i)11-s + (−0.499 + 0.0227i)12-s + (−0.202 + 0.350i)13-s + (−0.205 + 0.00938i)15-s + (−0.125 − 0.216i)16-s − 0.905·17-s + (0.704 − 0.0643i)18-s − 0.930·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.262−0.964i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.262−0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.262−0.964i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.262−0.964i)
|
Particular Values
L(1) |
≈ |
0.670558+0.877408i |
L(21) |
≈ |
0.670558+0.877408i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−0.933−1.45i)T |
| 7 | 1 |
good | 5 | 1+(0.230−0.398i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.82−3.15i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.730−1.26i)T+(−6.5−11.2i)T2 |
| 17 | 1+3.73T+17T2 |
| 19 | 1+4.05T+19T2 |
| 23 | 1+(0.566−0.981i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.48+7.77i)T+(−14.5+25.1i)T2 |
| 31 | 1+(0.257−0.445i)T+(−15.5−26.8i)T2 |
| 37 | 1−9.10T+37T2 |
| 41 | 1+(−0.472+0.819i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−4.66−8.07i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.16−2.01i)T+(−23.5+40.7i)T2 |
| 53 | 1+12.4T+53T2 |
| 59 | 1+(6.44−11.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6.04−10.4i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.16+2.00i)T+(−33.5−58.0i)T2 |
| 71 | 1−1.67T+71T2 |
| 73 | 1+13.2T+73T2 |
| 79 | 1+(−2.50−4.33i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3.32+5.75i)T+(−41.5+71.8i)T2 |
| 89 | 1+2.72T+89T2 |
| 97 | 1+(−5.59−9.68i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29536545839241275359206481567, −9.420208052635147185605810747714, −9.123737236654428185013057852911, −8.024437178887636210874022040893, −7.24320818642201148974568093051, −6.02455957268061562223062968438, −4.48107074577826830496612455077, −4.20788426783118535793088224913, −2.85472356020979899481084827048, −1.90669855114734031407795588638,
0.54296962872212431414735931939, 2.02134690490939877612695741801, 3.35931554086640352305274923772, 4.57515989992684649891162188458, 5.91959236632380549449445389084, 6.52404120009143073811586823437, 7.36968797455707803002139284365, 8.320230295888336430410853280387, 8.755626878802998613516509744987, 9.517620052073149239717092062202