L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + 0.999·8-s − 4·13-s + (−0.5 − 0.866i)16-s + (3 − 5.19i)17-s + (−1 − 1.73i)19-s + (2.5 − 4.33i)25-s + (2 + 3.46i)26-s + 6·29-s + (2 − 3.46i)31-s + (−0.499 + 0.866i)32-s − 6·34-s + (−1 − 1.73i)37-s + (−0.999 + 1.73i)38-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + 0.353·8-s − 1.10·13-s + (−0.125 − 0.216i)16-s + (0.727 − 1.26i)17-s + (−0.229 − 0.397i)19-s + (0.5 − 0.866i)25-s + (0.392 + 0.679i)26-s + 1.11·29-s + (0.359 − 0.622i)31-s + (−0.0883 + 0.153i)32-s − 1.02·34-s + (−0.164 − 0.284i)37-s + (−0.162 + 0.280i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.554939 - 0.834266i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.554939 - 0.834266i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 + 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3 - 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.947962399167162574763516562225, −9.202208327398030096372454610694, −8.290591895518752341408238230342, −7.43214040408875706848220213907, −6.61190330864623345980003208225, −5.22717740194178482115636502177, −4.48973455666388034502967389192, −3.13792778408072637693602168647, −2.27167569372610041124362855296, −0.57480985419816511141810679089,
1.41601001243632920313198798025, 2.96914043439670374576015188211, 4.30707667531637213604764354311, 5.25382606869139825437544321754, 6.16705628437093657687964839083, 7.04484775800697037631545065049, 7.893845413274031277357094778620, 8.579070835181114491590579675972, 9.562839283642452873150273824419, 10.24050168938634619756520511423