L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + 0.999·8-s − 4·13-s + (−0.5 − 0.866i)16-s + (3 − 5.19i)17-s + (−1 − 1.73i)19-s + (2.5 − 4.33i)25-s + (2 + 3.46i)26-s + 6·29-s + (2 − 3.46i)31-s + (−0.499 + 0.866i)32-s − 6·34-s + (−1 − 1.73i)37-s + (−0.999 + 1.73i)38-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + 0.353·8-s − 1.10·13-s + (−0.125 − 0.216i)16-s + (0.727 − 1.26i)17-s + (−0.229 − 0.397i)19-s + (0.5 − 0.866i)25-s + (0.392 + 0.679i)26-s + 1.11·29-s + (0.359 − 0.622i)31-s + (−0.0883 + 0.153i)32-s − 1.02·34-s + (−0.164 − 0.284i)37-s + (−0.162 + 0.280i)38-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.386+0.922i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.386+0.922i)
|
Particular Values
L(1) |
≈ |
0.554939−0.834266i |
L(21) |
≈ |
0.554939−0.834266i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−2.5+4.33i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 13 | 1+4T+13T2 |
| 17 | 1+(−3+5.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1+1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+(−2+3.46i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1+(6+10.3i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−3+5.19i)T+(−26.5−45.8i)T2 |
| 59 | 1+(3−5.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4+6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2+3.46i)T+(−33.5−58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+(1−1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(4+6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+(3+5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.947962399167162574763516562225, −9.202208327398030096372454610694, −8.290591895518752341408238230342, −7.43214040408875706848220213907, −6.61190330864623345980003208225, −5.22717740194178482115636502177, −4.48973455666388034502967389192, −3.13792778408072637693602168647, −2.27167569372610041124362855296, −0.57480985419816511141810679089,
1.41601001243632920313198798025, 2.96914043439670374576015188211, 4.30707667531637213604764354311, 5.25382606869139825437544321754, 6.16705628437093657687964839083, 7.04484775800697037631545065049, 7.893845413274031277357094778620, 8.579070835181114491590579675972, 9.562839283642452873150273824419, 10.24050168938634619756520511423