L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + 0.999·8-s + 4·13-s + (−0.5 + 0.866i)16-s + (−3 − 5.19i)17-s + (1 − 1.73i)19-s + (2.5 + 4.33i)25-s + (−2 + 3.46i)26-s + 6·29-s + (−2 − 3.46i)31-s + (−0.499 − 0.866i)32-s + 6·34-s + (−1 + 1.73i)37-s + (0.999 + 1.73i)38-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + 0.353·8-s + 1.10·13-s + (−0.125 + 0.216i)16-s + (−0.727 − 1.26i)17-s + (0.229 − 0.397i)19-s + (0.5 + 0.866i)25-s + (−0.392 + 0.679i)26-s + 1.11·29-s + (−0.359 − 0.622i)31-s + (−0.0883 − 0.153i)32-s + 1.02·34-s + (−0.164 + 0.284i)37-s + (0.162 + 0.280i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28668 + 0.163967i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28668 + 0.163967i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (-6 + 10.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 - 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 + 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-1 - 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03458217196504737449000820073, −9.077121502901718740174244911167, −8.657303558006121919107339150908, −7.50832315445137166254741236384, −6.86895803606696537734860737541, −5.91763966675191839057885172732, −5.01874547052489253303943963197, −3.96201716102204789433231923865, −2.58645387986878904012478155109, −0.905061614027266334376927730819,
1.13998151026283401648955805326, 2.44197013065682108198827134917, 3.67099487377760487735754976729, 4.47193653024812030918892525950, 5.83842875049177632595080084384, 6.63343478235961428792921448827, 7.82916649232246112174780567500, 8.584248611012648524612602635586, 9.174995102540854900453790019561, 10.39247262359629443990942940583