L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + 0.999·8-s + 4·13-s + (−0.5 + 0.866i)16-s + (−3 − 5.19i)17-s + (1 − 1.73i)19-s + (2.5 + 4.33i)25-s + (−2 + 3.46i)26-s + 6·29-s + (−2 − 3.46i)31-s + (−0.499 − 0.866i)32-s + 6·34-s + (−1 + 1.73i)37-s + (0.999 + 1.73i)38-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + 0.353·8-s + 1.10·13-s + (−0.125 + 0.216i)16-s + (−0.727 − 1.26i)17-s + (0.229 − 0.397i)19-s + (0.5 + 0.866i)25-s + (−0.392 + 0.679i)26-s + 1.11·29-s + (−0.359 − 0.622i)31-s + (−0.0883 − 0.153i)32-s + 1.02·34-s + (−0.164 + 0.284i)37-s + (0.162 + 0.280i)38-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(0.968−0.250i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(0.968−0.250i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
0.968−0.250i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), 0.968−0.250i)
|
Particular Values
L(1) |
≈ |
1.28668+0.163967i |
L(21) |
≈ |
1.28668+0.163967i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−2.5−4.33i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1−4T+13T2 |
| 17 | 1+(3+5.19i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1+1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+(2+3.46i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1−1.73i)T+(−18.5−32.0i)T2 |
| 41 | 1−6T+41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1+(−6+10.3i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−3−5.19i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3−5.19i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4+6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2−3.46i)T+(−33.5+58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+(−1−1.73i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4−6.92i)T+(−39.5−68.4i)T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+(−3+5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1−10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03458217196504737449000820073, −9.077121502901718740174244911167, −8.657303558006121919107339150908, −7.50832315445137166254741236384, −6.86895803606696537734860737541, −5.91763966675191839057885172732, −5.01874547052489253303943963197, −3.96201716102204789433231923865, −2.58645387986878904012478155109, −0.905061614027266334376927730819,
1.13998151026283401648955805326, 2.44197013065682108198827134917, 3.67099487377760487735754976729, 4.47193653024812030918892525950, 5.83842875049177632595080084384, 6.63343478235961428792921448827, 7.82916649232246112174780567500, 8.584248611012648524612602635586, 9.174995102540854900453790019561, 10.39247262359629443990942940583