L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.796 + 1.53i)3-s + (−0.499 − 0.866i)4-s − 0.593·5-s + (0.933 + 1.45i)6-s − 0.999·8-s + (−1.73 − 2.45i)9-s + (−0.296 + 0.514i)10-s − 0.593·11-s + (1.73 − 0.0789i)12-s + (1.25 − 2.17i)13-s + (0.472 − 0.912i)15-s + (−0.5 + 0.866i)16-s + (−1.46 + 2.52i)17-s + (−2.98 + 0.273i)18-s + (−2.69 − 4.66i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.460 + 0.887i)3-s + (−0.249 − 0.433i)4-s − 0.265·5-s + (0.381 + 0.595i)6-s − 0.353·8-s + (−0.576 − 0.816i)9-s + (−0.0938 + 0.162i)10-s − 0.178·11-s + (0.499 − 0.0227i)12-s + (0.348 − 0.603i)13-s + (0.122 − 0.235i)15-s + (−0.125 + 0.216i)16-s + (−0.354 + 0.613i)17-s + (−0.704 + 0.0643i)18-s + (−0.617 − 1.06i)19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.608+0.793i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.608+0.793i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.608+0.793i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.608+0.793i)
|
Particular Values
L(1) |
≈ |
0.352078−0.714185i |
L(21) |
≈ |
0.352078−0.714185i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(0.796−1.53i)T |
| 7 | 1 |
good | 5 | 1+0.593T+5T2 |
| 11 | 1+0.593T+11T2 |
| 13 | 1+(−1.25+2.17i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1.46−2.52i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.69+4.66i)T+(−9.5+16.4i)T2 |
| 23 | 1−4.46T+23T2 |
| 29 | 1+(3.09+5.36i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.93+6.81i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−0.136+0.236i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.58+9.66i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6.08+10.5i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.02+6.97i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−4.32−7.48i)T+(−29.5+51.0i)T2 |
| 61 | 1+(3.32−5.75i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.956−1.65i)T+(−33.5+58.0i)T2 |
| 71 | 1+14.4T+71T2 |
| 73 | 1+(3.95−6.85i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−4.62+8.00i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.85+6.66i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−6.21−10.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.86+10.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14570812906514688203649201206, −9.128727702070625757448230636540, −8.490700742993706447064813578370, −7.17504324354927848316463890733, −6.00426852614445019466856811867, −5.33008030029587114905917861928, −4.26082429886164228258604970531, −3.62640808473415162299507896563, −2.35122072651991706054154157876, −0.35676202302856068109599730474,
1.60982015257796281115018729157, 3.09536346883604719817534817938, 4.37771959156437190318007914439, 5.35354772291003960569278005938, 6.20104605944529926894323329318, 6.98389898657521094439239212326, 7.66855486851094427028996958333, 8.511365369229489965549495203750, 9.352605337987990635341621962292, 10.71903823938550972077457143256