L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.796 + 1.53i)3-s + (−0.499 − 0.866i)4-s − 0.593·5-s + (0.933 + 1.45i)6-s − 0.999·8-s + (−1.73 − 2.45i)9-s + (−0.296 + 0.514i)10-s − 0.593·11-s + (1.73 − 0.0789i)12-s + (1.25 − 2.17i)13-s + (0.472 − 0.912i)15-s + (−0.5 + 0.866i)16-s + (−1.46 + 2.52i)17-s + (−2.98 + 0.273i)18-s + (−2.69 − 4.66i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.460 + 0.887i)3-s + (−0.249 − 0.433i)4-s − 0.265·5-s + (0.381 + 0.595i)6-s − 0.353·8-s + (−0.576 − 0.816i)9-s + (−0.0938 + 0.162i)10-s − 0.178·11-s + (0.499 − 0.0227i)12-s + (0.348 − 0.603i)13-s + (0.122 − 0.235i)15-s + (−0.125 + 0.216i)16-s + (−0.354 + 0.613i)17-s + (−0.704 + 0.0643i)18-s + (−0.617 − 1.06i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 + 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.352078 - 0.714185i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.352078 - 0.714185i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.796 - 1.53i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 0.593T + 5T^{2} \) |
| 11 | \( 1 + 0.593T + 11T^{2} \) |
| 13 | \( 1 + (-1.25 + 2.17i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.46 - 2.52i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.69 + 4.66i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4.46T + 23T^{2} \) |
| 29 | \( 1 + (3.09 + 5.36i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.93 + 6.81i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.136 + 0.236i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.58 + 9.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.08 + 10.5i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.02 + 6.97i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.32 - 7.48i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.32 - 5.75i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.956 - 1.65i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.4T + 71T^{2} \) |
| 73 | \( 1 + (3.95 - 6.85i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.62 + 8.00i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.85 + 6.66i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.21 - 10.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.86 + 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14570812906514688203649201206, −9.128727702070625757448230636540, −8.490700742993706447064813578370, −7.17504324354927848316463890733, −6.00426852614445019466856811867, −5.33008030029587114905917861928, −4.26082429886164228258604970531, −3.62640808473415162299507896563, −2.35122072651991706054154157876, −0.35676202302856068109599730474,
1.60982015257796281115018729157, 3.09536346883604719817534817938, 4.37771959156437190318007914439, 5.35354772291003960569278005938, 6.20104605944529926894323329318, 6.98389898657521094439239212326, 7.66855486851094427028996958333, 8.511365369229489965549495203750, 9.352605337987990635341621962292, 10.71903823938550972077457143256