Properties

Label 2-882-1.1-c5-0-47
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s − 59.5·5-s − 64·8-s + 238.·10-s + 616.·11-s − 418.·13-s + 256·16-s + 1.79e3·17-s − 1.27e3·19-s − 953.·20-s − 2.46e3·22-s − 4.78e3·23-s + 426.·25-s + 1.67e3·26-s − 1.71e3·29-s − 642.·31-s − 1.02e3·32-s − 7.17e3·34-s − 2.36e3·37-s + 5.11e3·38-s + 3.81e3·40-s + 1.56e4·41-s − 1.63e3·43-s + 9.86e3·44-s + 1.91e4·46-s + 2.07e4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.06·5-s − 0.353·8-s + 0.753·10-s + 1.53·11-s − 0.686·13-s + 0.250·16-s + 1.50·17-s − 0.813·19-s − 0.533·20-s − 1.08·22-s − 1.88·23-s + 0.136·25-s + 0.485·26-s − 0.378·29-s − 0.120·31-s − 0.176·32-s − 1.06·34-s − 0.283·37-s + 0.575·38-s + 0.376·40-s + 1.45·41-s − 0.135·43-s + 0.767·44-s + 1.33·46-s + 1.36·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 59.5T + 3.12e3T^{2} \)
11 \( 1 - 616.T + 1.61e5T^{2} \)
13 \( 1 + 418.T + 3.71e5T^{2} \)
17 \( 1 - 1.79e3T + 1.41e6T^{2} \)
19 \( 1 + 1.27e3T + 2.47e6T^{2} \)
23 \( 1 + 4.78e3T + 6.43e6T^{2} \)
29 \( 1 + 1.71e3T + 2.05e7T^{2} \)
31 \( 1 + 642.T + 2.86e7T^{2} \)
37 \( 1 + 2.36e3T + 6.93e7T^{2} \)
41 \( 1 - 1.56e4T + 1.15e8T^{2} \)
43 \( 1 + 1.63e3T + 1.47e8T^{2} \)
47 \( 1 - 2.07e4T + 2.29e8T^{2} \)
53 \( 1 - 5.34e3T + 4.18e8T^{2} \)
59 \( 1 - 1.68e4T + 7.14e8T^{2} \)
61 \( 1 - 1.35e4T + 8.44e8T^{2} \)
67 \( 1 + 4.64e4T + 1.35e9T^{2} \)
71 \( 1 - 3.27e3T + 1.80e9T^{2} \)
73 \( 1 - 7.67e4T + 2.07e9T^{2} \)
79 \( 1 + 1.77e4T + 3.07e9T^{2} \)
83 \( 1 - 7.88e4T + 3.93e9T^{2} \)
89 \( 1 - 7.41e4T + 5.58e9T^{2} \)
97 \( 1 + 2.43e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.991401496919358282146114694328, −8.002081889761395316410637999759, −7.55430958542966741602841448909, −6.57017348092223294919284127802, −5.66512933122514901580679591304, −4.16936035130082708753465584189, −3.65836644967760464957873419020, −2.22497586143914281034170014326, −1.04420409080615409248609403174, 0, 1.04420409080615409248609403174, 2.22497586143914281034170014326, 3.65836644967760464957873419020, 4.16936035130082708753465584189, 5.66512933122514901580679591304, 6.57017348092223294919284127802, 7.55430958542966741602841448909, 8.002081889761395316410637999759, 8.991401496919358282146114694328

Graph of the $Z$-function along the critical line