Properties

Label 2-882-1.1-c5-0-25
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 6·5-s − 64·8-s − 24·10-s + 666·11-s − 559·13-s + 256·16-s + 1.74e3·17-s + 1.15e3·19-s + 96·20-s − 2.66e3·22-s + 3.46e3·23-s − 3.08e3·25-s + 2.23e3·26-s − 3.37e3·29-s + 6.29e3·31-s − 1.02e3·32-s − 6.96e3·34-s + 3.13e3·37-s − 4.62e3·38-s − 384·40-s + 4.86e3·41-s − 1.14e4·43-s + 1.06e4·44-s − 1.38e4·46-s − 2.31e3·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.107·5-s − 0.353·8-s − 0.0758·10-s + 1.65·11-s − 0.917·13-s + 1/4·16-s + 1.46·17-s + 0.735·19-s + 0.0536·20-s − 1.17·22-s + 1.36·23-s − 0.988·25-s + 0.648·26-s − 0.744·29-s + 1.17·31-s − 0.176·32-s − 1.03·34-s + 0.375·37-s − 0.519·38-s − 0.0379·40-s + 0.452·41-s − 0.940·43-s + 0.829·44-s − 0.966·46-s − 0.152·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.003741723\)
\(L(\frac12)\) \(\approx\) \(2.003741723\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 6 T + p^{5} T^{2} \)
11 \( 1 - 666 T + p^{5} T^{2} \)
13 \( 1 + 43 p T + p^{5} T^{2} \)
17 \( 1 - 1740 T + p^{5} T^{2} \)
19 \( 1 - 1157 T + p^{5} T^{2} \)
23 \( 1 - 3468 T + p^{5} T^{2} \)
29 \( 1 + 3372 T + p^{5} T^{2} \)
31 \( 1 - 203 p T + p^{5} T^{2} \)
37 \( 1 - 3131 T + p^{5} T^{2} \)
41 \( 1 - 4866 T + p^{5} T^{2} \)
43 \( 1 + 11407 T + p^{5} T^{2} \)
47 \( 1 + 2310 T + p^{5} T^{2} \)
53 \( 1 - 28296 T + p^{5} T^{2} \)
59 \( 1 + 20544 T + p^{5} T^{2} \)
61 \( 1 + 4630 T + p^{5} T^{2} \)
67 \( 1 + 18745 T + p^{5} T^{2} \)
71 \( 1 - 38226 T + p^{5} T^{2} \)
73 \( 1 - 70589 T + p^{5} T^{2} \)
79 \( 1 + 62293 T + p^{5} T^{2} \)
83 \( 1 + 79818 T + p^{5} T^{2} \)
89 \( 1 - 18120 T + p^{5} T^{2} \)
97 \( 1 - 124754 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.664349138323203778659196575783, −8.658495115017593443378072223597, −7.66557689884245196807138029878, −7.02076879289246138666925747518, −6.08333780203388826245278855734, −5.11487495718468250589765372955, −3.85265685426776837937786103072, −2.87139104820102573209725856815, −1.55514932837920553532004312843, −0.76314077607542482855287364593, 0.76314077607542482855287364593, 1.55514932837920553532004312843, 2.87139104820102573209725856815, 3.85265685426776837937786103072, 5.11487495718468250589765372955, 6.08333780203388826245278855734, 7.02076879289246138666925747518, 7.66557689884245196807138029878, 8.658495115017593443378072223597, 9.664349138323203778659196575783

Graph of the $Z$-function along the critical line