L(s) = 1 | − 5-s − 6·11-s − 2·13-s − 6·17-s − 8·19-s − 3·23-s + 25-s − 3·29-s − 2·31-s + 8·37-s − 3·41-s + 5·43-s − 12·53-s + 6·55-s + 61-s + 2·65-s − 7·67-s + 10·73-s − 4·79-s + 3·83-s + 6·85-s − 3·89-s + 8·95-s + 10·97-s − 3·101-s + 7·103-s + 3·107-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.80·11-s − 0.554·13-s − 1.45·17-s − 1.83·19-s − 0.625·23-s + 1/5·25-s − 0.557·29-s − 0.359·31-s + 1.31·37-s − 0.468·41-s + 0.762·43-s − 1.64·53-s + 0.809·55-s + 0.128·61-s + 0.248·65-s − 0.855·67-s + 1.17·73-s − 0.450·79-s + 0.329·83-s + 0.650·85-s − 0.317·89-s + 0.820·95-s + 1.01·97-s − 0.298·101-s + 0.689·103-s + 0.290·107-s + ⋯ |
Λ(s)=(=(8820s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8820s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4181548244 |
L(21) |
≈ |
0.4181548244 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 7 | 1 |
good | 11 | 1+6T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1+3T+pT2 |
| 43 | 1−5T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1+7T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−3T+pT2 |
| 89 | 1+3T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77468326399584550521827841367, −7.20111926956575288966148646324, −6.34142829172486695403193989702, −5.77091786358778297474480067197, −4.67021280813719951130691094523, −4.53586003248224039106093854886, −3.45679418594533079489720780262, −2.43909193961244322183180369905, −2.07696906998804114155894339696, −0.28745544287901866526726671660,
0.28745544287901866526726671660, 2.07696906998804114155894339696, 2.43909193961244322183180369905, 3.45679418594533079489720780262, 4.53586003248224039106093854886, 4.67021280813719951130691094523, 5.77091786358778297474480067197, 6.34142829172486695403193989702, 7.20111926956575288966148646324, 7.77468326399584550521827841367