Properties

Label 2-8820-1.1-c1-0-0
Degree $2$
Conductor $8820$
Sign $1$
Analytic cond. $70.4280$
Root an. cond. $8.39214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 6·11-s − 2·13-s − 6·17-s − 8·19-s − 3·23-s + 25-s − 3·29-s − 2·31-s + 8·37-s − 3·41-s + 5·43-s − 12·53-s + 6·55-s + 61-s + 2·65-s − 7·67-s + 10·73-s − 4·79-s + 3·83-s + 6·85-s − 3·89-s + 8·95-s + 10·97-s − 3·101-s + 7·103-s + 3·107-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.80·11-s − 0.554·13-s − 1.45·17-s − 1.83·19-s − 0.625·23-s + 1/5·25-s − 0.557·29-s − 0.359·31-s + 1.31·37-s − 0.468·41-s + 0.762·43-s − 1.64·53-s + 0.809·55-s + 0.128·61-s + 0.248·65-s − 0.855·67-s + 1.17·73-s − 0.450·79-s + 0.329·83-s + 0.650·85-s − 0.317·89-s + 0.820·95-s + 1.01·97-s − 0.298·101-s + 0.689·103-s + 0.290·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8820\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(70.4280\)
Root analytic conductor: \(8.39214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8820,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4181548244\)
\(L(\frac12)\) \(\approx\) \(0.4181548244\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77468326399584550521827841367, −7.20111926956575288966148646324, −6.34142829172486695403193989702, −5.77091786358778297474480067197, −4.67021280813719951130691094523, −4.53586003248224039106093854886, −3.45679418594533079489720780262, −2.43909193961244322183180369905, −2.07696906998804114155894339696, −0.28745544287901866526726671660, 0.28745544287901866526726671660, 2.07696906998804114155894339696, 2.43909193961244322183180369905, 3.45679418594533079489720780262, 4.53586003248224039106093854886, 4.67021280813719951130691094523, 5.77091786358778297474480067197, 6.34142829172486695403193989702, 7.20111926956575288966148646324, 7.77468326399584550521827841367

Graph of the $Z$-function along the critical line