Properties

Label 2-8820-1.1-c1-0-44
Degree $2$
Conductor $8820$
Sign $-1$
Analytic cond. $70.4280$
Root an. cond. $8.39214$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 1.32·11-s − 0.323·13-s + 6.27·17-s − 3.95·19-s − 3.63·23-s + 25-s + 5.23·29-s + 31-s − 4.63·37-s − 8.58·41-s + 5.27·43-s + 3.91·47-s − 12.5·53-s + 1.32·55-s + 7.32·59-s + 2.95·61-s + 0.323·65-s + 0.323·67-s − 4.67·71-s + 3.36·73-s + 10.5·79-s − 8.92·83-s − 6.27·85-s − 13.8·89-s + 3.95·95-s − 3.60·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.398·11-s − 0.0896·13-s + 1.52·17-s − 0.907·19-s − 0.757·23-s + 0.200·25-s + 0.972·29-s + 0.179·31-s − 0.761·37-s − 1.34·41-s + 0.805·43-s + 0.570·47-s − 1.72·53-s + 0.178·55-s + 0.953·59-s + 0.378·61-s + 0.0401·65-s + 0.0394·67-s − 0.555·71-s + 0.394·73-s + 1.18·79-s − 0.979·83-s − 0.681·85-s − 1.47·89-s + 0.405·95-s − 0.365·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8820\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(70.4280\)
Root analytic conductor: \(8.39214\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8820,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 1.32T + 11T^{2} \)
13 \( 1 + 0.323T + 13T^{2} \)
17 \( 1 - 6.27T + 17T^{2} \)
19 \( 1 + 3.95T + 19T^{2} \)
23 \( 1 + 3.63T + 23T^{2} \)
29 \( 1 - 5.23T + 29T^{2} \)
31 \( 1 - T + 31T^{2} \)
37 \( 1 + 4.63T + 37T^{2} \)
41 \( 1 + 8.58T + 41T^{2} \)
43 \( 1 - 5.27T + 43T^{2} \)
47 \( 1 - 3.91T + 47T^{2} \)
53 \( 1 + 12.5T + 53T^{2} \)
59 \( 1 - 7.32T + 59T^{2} \)
61 \( 1 - 2.95T + 61T^{2} \)
67 \( 1 - 0.323T + 67T^{2} \)
71 \( 1 + 4.67T + 71T^{2} \)
73 \( 1 - 3.36T + 73T^{2} \)
79 \( 1 - 10.5T + 79T^{2} \)
83 \( 1 + 8.92T + 83T^{2} \)
89 \( 1 + 13.8T + 89T^{2} \)
97 \( 1 + 3.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48635966072515491997448673811, −6.76329268557715266460838779200, −6.04251193623633270422292009996, −5.31501582198471571999853671764, −4.62566021670843276529538235890, −3.80982613714810986485334692932, −3.13745725554918756168225421889, −2.24552915943317034602214269420, −1.18765098519370445792183443683, 0, 1.18765098519370445792183443683, 2.24552915943317034602214269420, 3.13745725554918756168225421889, 3.80982613714810986485334692932, 4.62566021670843276529538235890, 5.31501582198471571999853671764, 6.04251193623633270422292009996, 6.76329268557715266460838779200, 7.48635966072515491997448673811

Graph of the $Z$-function along the critical line