L(s) = 1 | − 5-s + 4·11-s − 4·13-s − 2·17-s + 4·23-s + 25-s − 8·31-s + 2·37-s + 2·41-s + 4·43-s − 4·47-s − 4·53-s − 4·55-s − 4·59-s + 8·61-s + 4·65-s − 4·67-s − 12·71-s + 4·73-s + 4·79-s + 8·83-s + 2·85-s − 14·89-s + 12·97-s − 10·101-s − 8·103-s − 12·107-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.20·11-s − 1.10·13-s − 0.485·17-s + 0.834·23-s + 1/5·25-s − 1.43·31-s + 0.328·37-s + 0.312·41-s + 0.609·43-s − 0.583·47-s − 0.549·53-s − 0.539·55-s − 0.520·59-s + 1.02·61-s + 0.496·65-s − 0.488·67-s − 1.42·71-s + 0.468·73-s + 0.450·79-s + 0.878·83-s + 0.216·85-s − 1.48·89-s + 1.21·97-s − 0.995·101-s − 0.788·103-s − 1.16·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 8 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 - 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.30672828993234333599589394197, −6.87644128724106102673488561052, −6.11978076235918333081154502407, −5.25505689530664406506123814516, −4.55414188852397690870022194512, −3.91658753603146906810952441844, −3.11479655240398437987449681020, −2.20747071617922617088231186769, −1.21800253363110531001071950669, 0,
1.21800253363110531001071950669, 2.20747071617922617088231186769, 3.11479655240398437987449681020, 3.91658753603146906810952441844, 4.55414188852397690870022194512, 5.25505689530664406506123814516, 6.11978076235918333081154502407, 6.87644128724106102673488561052, 7.30672828993234333599589394197