L(s) = 1 | + (−0.288 − 0.128i)2-s + (−1.27 − 1.41i)4-s + (3.70 − 1.64i)5-s + (−3.33 + 0.709i)7-s + (0.380 + 1.17i)8-s − 1.28·10-s + (−3.27 + 0.553i)11-s + (−0.144 − 1.37i)13-s + (1.05 + 0.224i)14-s + (−0.356 + 3.39i)16-s + (−5.20 − 3.78i)17-s + (−1.07 − 3.31i)19-s + (−7.03 − 3.13i)20-s + (1.01 + 0.260i)22-s + (−1.86 + 3.23i)23-s + ⋯ |
L(s) = 1 | + (−0.204 − 0.0909i)2-s + (−0.635 − 0.706i)4-s + (1.65 − 0.737i)5-s + (−1.26 + 0.267i)7-s + (0.134 + 0.414i)8-s − 0.405·10-s + (−0.985 + 0.166i)11-s + (−0.0400 − 0.381i)13-s + (0.281 + 0.0599i)14-s + (−0.0891 + 0.847i)16-s + (−1.26 − 0.916i)17-s + (−0.247 − 0.760i)19-s + (−1.57 − 0.700i)20-s + (0.216 + 0.0555i)22-s + (−0.389 + 0.675i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00433i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.00433i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00115226 - 0.531559i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00115226 - 0.531559i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (3.27 - 0.553i)T \) |
good | 2 | \( 1 + (0.288 + 0.128i)T + (1.33 + 1.48i)T^{2} \) |
| 5 | \( 1 + (-3.70 + 1.64i)T + (3.34 - 3.71i)T^{2} \) |
| 7 | \( 1 + (3.33 - 0.709i)T + (6.39 - 2.84i)T^{2} \) |
| 13 | \( 1 + (0.144 + 1.37i)T + (-12.7 + 2.70i)T^{2} \) |
| 17 | \( 1 + (5.20 + 3.78i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.07 + 3.31i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (1.86 - 3.23i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.0729 + 0.0155i)T + (26.4 - 11.7i)T^{2} \) |
| 31 | \( 1 + (-0.390 - 3.71i)T + (-30.3 + 6.44i)T^{2} \) |
| 37 | \( 1 + (0.381 - 1.17i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (9.11 + 1.93i)T + (37.4 + 16.6i)T^{2} \) |
| 43 | \( 1 + (-0.228 - 0.395i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.46 - 1.63i)T + (-4.91 - 46.7i)T^{2} \) |
| 53 | \( 1 + (-0.729 + 0.530i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (5.36 + 5.96i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + (0.603 - 5.74i)T + (-59.6 - 12.6i)T^{2} \) |
| 67 | \( 1 + (-2.92 + 5.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.66 - 5.56i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.34 + 13.3i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (10.0 + 4.47i)T + (52.8 + 58.7i)T^{2} \) |
| 83 | \( 1 + (-0.143 + 1.36i)T + (-81.1 - 17.2i)T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + (7.53 + 3.35i)T + (64.9 + 72.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.694558936970992613104005823819, −9.127802581382164894047161295964, −8.457855380942469724906773910636, −6.86614908218732695497382061168, −6.08063363506701710749316199875, −5.29444794265520374157331139724, −4.71998437767867085207444612431, −2.87604010199922948996205297448, −1.87107594056148905012902826354, −0.25106705897357914654426306222,
2.14522994141274730155497868810, 3.08028494503808089961125791481, 4.15890571420937113982065556049, 5.49334389544747919111213988714, 6.41282177375271595741202485169, 6.88673982472043462244172891557, 8.157172991634048557322116524693, 8.976392102205863571291652830059, 9.884082252155495719460718097397, 10.14902832145782431836813511781