L(s) = 1 | + (2.09 + 0.934i)2-s + (2.19 + 2.43i)4-s + (1.55 − 0.690i)5-s + (−0.203 + 0.0431i)7-s + (0.910 + 2.80i)8-s + 3.90·10-s + (2.04 − 2.60i)11-s + (−0.144 − 1.37i)13-s + (−0.466 − 0.0992i)14-s + (−0.0217 + 0.206i)16-s + (2.97 + 2.15i)17-s + (2.50 + 7.70i)19-s + (5.08 + 2.26i)20-s + (6.73 − 3.56i)22-s + (−1.99 + 3.45i)23-s + ⋯ |
L(s) = 1 | + (1.48 + 0.660i)2-s + (1.09 + 1.21i)4-s + (0.693 − 0.308i)5-s + (−0.0767 + 0.0163i)7-s + (0.321 + 0.990i)8-s + 1.23·10-s + (0.617 − 0.786i)11-s + (−0.0400 − 0.381i)13-s + (−0.124 − 0.0265i)14-s + (−0.00542 + 0.0516i)16-s + (0.720 + 0.523i)17-s + (0.574 + 1.76i)19-s + (1.13 + 0.506i)20-s + (1.43 − 0.759i)22-s + (−0.416 + 0.721i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.737 - 0.675i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.737 - 0.675i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.74667 + 1.45669i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.74667 + 1.45669i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.04 + 2.60i)T \) |
good | 2 | \( 1 + (-2.09 - 0.934i)T + (1.33 + 1.48i)T^{2} \) |
| 5 | \( 1 + (-1.55 + 0.690i)T + (3.34 - 3.71i)T^{2} \) |
| 7 | \( 1 + (0.203 - 0.0431i)T + (6.39 - 2.84i)T^{2} \) |
| 13 | \( 1 + (0.144 + 1.37i)T + (-12.7 + 2.70i)T^{2} \) |
| 17 | \( 1 + (-2.97 - 2.15i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.50 - 7.70i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (1.99 - 3.45i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.530 - 0.112i)T + (26.4 - 11.7i)T^{2} \) |
| 31 | \( 1 + (1.02 + 9.77i)T + (-30.3 + 6.44i)T^{2} \) |
| 37 | \( 1 + (0.381 - 1.17i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (9.13 + 1.94i)T + (37.4 + 16.6i)T^{2} \) |
| 43 | \( 1 + (3.96 + 6.86i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.25 - 5.83i)T + (-4.91 - 46.7i)T^{2} \) |
| 53 | \( 1 + (5.30 - 3.85i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-5.26 - 5.84i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + (-0.145 + 1.38i)T + (-59.6 - 12.6i)T^{2} \) |
| 67 | \( 1 + (-2.92 + 5.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.3 - 7.49i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.36 + 7.27i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (5.30 + 2.36i)T + (52.8 + 58.7i)T^{2} \) |
| 83 | \( 1 + (-1.45 + 13.7i)T + (-81.1 - 17.2i)T^{2} \) |
| 89 | \( 1 + 6.19T + 89T^{2} \) |
| 97 | \( 1 + (6.41 + 2.85i)T + (64.9 + 72.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10967024684845905861342676053, −9.502238422272909581961902565532, −8.198303965349340324822779579843, −7.54599599710368279524250782657, −6.26598472196005653006616284984, −5.83472643061899524898232460934, −5.20398337179677778083050404602, −3.85670447607201129126650059095, −3.33634410245590151166350592195, −1.65555379681884070845652021226,
1.64873074716557662719826053874, 2.66765120688604185935686543274, 3.57950605457240475530221167268, 4.79036417587050639679405463928, 5.22464122100216280999376401174, 6.59822860697523277573296913829, 6.81927020877516601420296670426, 8.415699260225294192664390608482, 9.614124654046048214090131294665, 10.08894674811143812754101736841