Properties

Label 2-891-99.31-c1-0-34
Degree 22
Conductor 891891
Sign 0.990+0.140i0.990 + 0.140i
Analytic cond. 7.114677.11467
Root an. cond. 2.667332.66733
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.40 − 0.511i)2-s + (3.70 − 1.64i)4-s + (0.968 + 0.205i)5-s + (−0.451 + 4.29i)7-s + (4.08 − 2.96i)8-s + 2.43·10-s + (0.155 − 3.31i)11-s + (2.42 + 2.68i)13-s + (1.11 + 10.5i)14-s + (2.89 − 3.21i)16-s + (−0.816 − 2.51i)17-s + (3.09 − 2.24i)19-s + (3.92 − 0.834i)20-s + (−1.31 − 8.05i)22-s + (1.72 − 2.98i)23-s + ⋯
L(s)  = 1  + (1.70 − 0.361i)2-s + (1.85 − 0.824i)4-s + (0.432 + 0.0920i)5-s + (−0.170 + 1.62i)7-s + (1.44 − 1.04i)8-s + 0.770·10-s + (0.0469 − 0.998i)11-s + (0.671 + 0.745i)13-s + (0.297 + 2.82i)14-s + (0.723 − 0.803i)16-s + (−0.197 − 0.609i)17-s + (0.710 − 0.516i)19-s + (0.877 − 0.186i)20-s + (−0.281 − 1.71i)22-s + (0.359 − 0.623i)23-s + ⋯

Functional equation

Λ(s)=(891s/2ΓC(s)L(s)=((0.990+0.140i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(891s/2ΓC(s+1/2)L(s)=((0.990+0.140i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 891891    =    34113^{4} \cdot 11
Sign: 0.990+0.140i0.990 + 0.140i
Analytic conductor: 7.114677.11467
Root analytic conductor: 2.667332.66733
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ891(757,)\chi_{891} (757, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 891, ( :1/2), 0.990+0.140i)(2,\ 891,\ (\ :1/2),\ 0.990 + 0.140i)

Particular Values

L(1)L(1) \approx 4.424180.312123i4.42418 - 0.312123i
L(12)L(\frac12) \approx 4.424180.312123i4.42418 - 0.312123i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1+(0.155+3.31i)T 1 + (-0.155 + 3.31i)T
good2 1+(2.40+0.511i)T+(1.820.813i)T2 1 + (-2.40 + 0.511i)T + (1.82 - 0.813i)T^{2}
5 1+(0.9680.205i)T+(4.56+2.03i)T2 1 + (-0.968 - 0.205i)T + (4.56 + 2.03i)T^{2}
7 1+(0.4514.29i)T+(6.841.45i)T2 1 + (0.451 - 4.29i)T + (-6.84 - 1.45i)T^{2}
13 1+(2.422.68i)T+(1.35+12.9i)T2 1 + (-2.42 - 2.68i)T + (-1.35 + 12.9i)T^{2}
17 1+(0.816+2.51i)T+(13.7+9.99i)T2 1 + (0.816 + 2.51i)T + (-13.7 + 9.99i)T^{2}
19 1+(3.09+2.24i)T+(5.8718.0i)T2 1 + (-3.09 + 2.24i)T + (5.87 - 18.0i)T^{2}
23 1+(1.72+2.98i)T+(11.519.9i)T2 1 + (-1.72 + 2.98i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.0810.3i)T+(28.36.02i)T2 1 + (1.08 - 10.3i)T + (-28.3 - 6.02i)T^{2}
31 1+(1.12+1.25i)T+(3.24+30.8i)T2 1 + (1.12 + 1.25i)T + (-3.24 + 30.8i)T^{2}
37 1+(2.61+1.90i)T+(11.4+35.1i)T2 1 + (2.61 + 1.90i)T + (11.4 + 35.1i)T^{2}
41 1+(1.24+11.8i)T+(40.1+8.52i)T2 1 + (1.24 + 11.8i)T + (-40.1 + 8.52i)T^{2}
43 1+(1.061.83i)T+(21.5+37.2i)T2 1 + (-1.06 - 1.83i)T + (-21.5 + 37.2i)T^{2}
47 1+(3.92+1.74i)T+(31.4+34.9i)T2 1 + (3.92 + 1.74i)T + (31.4 + 34.9i)T^{2}
53 1+(2.93+9.01i)T+(42.831.1i)T2 1 + (-2.93 + 9.01i)T + (-42.8 - 31.1i)T^{2}
59 1+(5.912.63i)T+(39.443.8i)T2 1 + (5.91 - 2.63i)T + (39.4 - 43.8i)T^{2}
61 1+(3.213.57i)T+(6.3760.6i)T2 1 + (3.21 - 3.57i)T + (-6.37 - 60.6i)T^{2}
67 1+(0.4270.739i)T+(33.558.0i)T2 1 + (0.427 - 0.739i)T + (-33.5 - 58.0i)T^{2}
71 1+(1.163.59i)T+(57.4+41.7i)T2 1 + (-1.16 - 3.59i)T + (-57.4 + 41.7i)T^{2}
73 1+(9.22+6.70i)T+(22.5+69.4i)T2 1 + (9.22 + 6.70i)T + (22.5 + 69.4i)T^{2}
79 1+(6.001.27i)T+(72.132.1i)T2 1 + (6.00 - 1.27i)T + (72.1 - 32.1i)T^{2}
83 1+(2.242.49i)T+(8.6782.5i)T2 1 + (2.24 - 2.49i)T + (-8.67 - 82.5i)T^{2}
89 113.2T+89T2 1 - 13.2T + 89T^{2}
97 1+(0.363+0.0772i)T+(88.639.4i)T2 1 + (-0.363 + 0.0772i)T + (88.6 - 39.4i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.47816670841153272496103047246, −9.098389659957915538880545821012, −8.751535908361366577935742036509, −7.05203255987818527624130482980, −6.21857358287926170952894117388, −5.58364717309963409274586113271, −4.95691965399885821795442019260, −3.61169253743977768494079199209, −2.82506193142502707552818805080, −1.88798523699328536316986320375, 1.58212490171419412707799817306, 3.17082825136683945634482695062, 3.97955608428232424236535543204, 4.68056085876662608124649361239, 5.76927335604584504447847276979, 6.42643179221788652259541841331, 7.42187035951023263550635236665, 7.87135028197470768330131227626, 9.601061112522684990626619581954, 10.26128479348517042014509573644

Graph of the ZZ-function along the critical line