L(s) = 1 | + (2.40 − 0.511i)2-s + (3.70 − 1.64i)4-s + (0.968 + 0.205i)5-s + (−0.451 + 4.29i)7-s + (4.08 − 2.96i)8-s + 2.43·10-s + (0.155 − 3.31i)11-s + (2.42 + 2.68i)13-s + (1.11 + 10.5i)14-s + (2.89 − 3.21i)16-s + (−0.816 − 2.51i)17-s + (3.09 − 2.24i)19-s + (3.92 − 0.834i)20-s + (−1.31 − 8.05i)22-s + (1.72 − 2.98i)23-s + ⋯ |
L(s) = 1 | + (1.70 − 0.361i)2-s + (1.85 − 0.824i)4-s + (0.432 + 0.0920i)5-s + (−0.170 + 1.62i)7-s + (1.44 − 1.04i)8-s + 0.770·10-s + (0.0469 − 0.998i)11-s + (0.671 + 0.745i)13-s + (0.297 + 2.82i)14-s + (0.723 − 0.803i)16-s + (−0.197 − 0.609i)17-s + (0.710 − 0.516i)19-s + (0.877 − 0.186i)20-s + (−0.281 − 1.71i)22-s + (0.359 − 0.623i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.42418 - 0.312123i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.42418 - 0.312123i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-0.155 + 3.31i)T \) |
good | 2 | \( 1 + (-2.40 + 0.511i)T + (1.82 - 0.813i)T^{2} \) |
| 5 | \( 1 + (-0.968 - 0.205i)T + (4.56 + 2.03i)T^{2} \) |
| 7 | \( 1 + (0.451 - 4.29i)T + (-6.84 - 1.45i)T^{2} \) |
| 13 | \( 1 + (-2.42 - 2.68i)T + (-1.35 + 12.9i)T^{2} \) |
| 17 | \( 1 + (0.816 + 2.51i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.09 + 2.24i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.72 + 2.98i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.08 - 10.3i)T + (-28.3 - 6.02i)T^{2} \) |
| 31 | \( 1 + (1.12 + 1.25i)T + (-3.24 + 30.8i)T^{2} \) |
| 37 | \( 1 + (2.61 + 1.90i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (1.24 + 11.8i)T + (-40.1 + 8.52i)T^{2} \) |
| 43 | \( 1 + (-1.06 - 1.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.92 + 1.74i)T + (31.4 + 34.9i)T^{2} \) |
| 53 | \( 1 + (-2.93 + 9.01i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (5.91 - 2.63i)T + (39.4 - 43.8i)T^{2} \) |
| 61 | \( 1 + (3.21 - 3.57i)T + (-6.37 - 60.6i)T^{2} \) |
| 67 | \( 1 + (0.427 - 0.739i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.16 - 3.59i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (9.22 + 6.70i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (6.00 - 1.27i)T + (72.1 - 32.1i)T^{2} \) |
| 83 | \( 1 + (2.24 - 2.49i)T + (-8.67 - 82.5i)T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 + (-0.363 + 0.0772i)T + (88.6 - 39.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47816670841153272496103047246, −9.098389659957915538880545821012, −8.751535908361366577935742036509, −7.05203255987818527624130482980, −6.21857358287926170952894117388, −5.58364717309963409274586113271, −4.95691965399885821795442019260, −3.61169253743977768494079199209, −2.82506193142502707552818805080, −1.88798523699328536316986320375,
1.58212490171419412707799817306, 3.17082825136683945634482695062, 3.97955608428232424236535543204, 4.68056085876662608124649361239, 5.76927335604584504447847276979, 6.42643179221788652259541841331, 7.42187035951023263550635236665, 7.87135028197470768330131227626, 9.601061112522684990626619581954, 10.26128479348517042014509573644