L(s) = 1 | + (0.0330 + 0.314i)2-s + (1.85 − 0.395i)4-s + (−0.423 + 4.03i)5-s + (2.28 + 2.53i)7-s + (0.380 + 1.17i)8-s − 1.28·10-s + (2.11 + 2.55i)11-s + (1.26 + 0.562i)13-s + (−0.721 + 0.801i)14-s + (3.11 − 1.38i)16-s + (−5.20 − 3.78i)17-s + (−1.07 − 3.31i)19-s + (0.805 + 7.66i)20-s + (−0.733 + 0.749i)22-s + (−1.86 − 3.23i)23-s + ⋯ |
L(s) = 1 | + (0.0233 + 0.222i)2-s + (0.929 − 0.197i)4-s + (−0.189 + 1.80i)5-s + (0.862 + 0.957i)7-s + (0.134 + 0.414i)8-s − 0.405·10-s + (0.637 + 0.770i)11-s + (0.350 + 0.155i)13-s + (−0.192 + 0.214i)14-s + (0.778 − 0.346i)16-s + (−1.26 − 0.916i)17-s + (−0.247 − 0.760i)19-s + (0.180 + 1.71i)20-s + (−0.156 + 0.159i)22-s + (−0.389 − 0.675i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.177 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.177 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35136 + 1.61759i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35136 + 1.61759i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.11 - 2.55i)T \) |
good | 2 | \( 1 + (-0.0330 - 0.314i)T + (-1.95 + 0.415i)T^{2} \) |
| 5 | \( 1 + (0.423 - 4.03i)T + (-4.89 - 1.03i)T^{2} \) |
| 7 | \( 1 + (-2.28 - 2.53i)T + (-0.731 + 6.96i)T^{2} \) |
| 13 | \( 1 + (-1.26 - 0.562i)T + (8.69 + 9.66i)T^{2} \) |
| 17 | \( 1 + (5.20 + 3.78i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.07 + 3.31i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (1.86 + 3.23i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.0499 + 0.0554i)T + (-3.03 + 28.8i)T^{2} \) |
| 31 | \( 1 + (3.41 + 1.52i)T + (20.7 + 23.0i)T^{2} \) |
| 37 | \( 1 + (0.381 - 1.17i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-6.23 + 6.92i)T + (-4.28 - 40.7i)T^{2} \) |
| 43 | \( 1 + (-0.228 + 0.395i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.14 - 0.456i)T + (42.9 + 19.1i)T^{2} \) |
| 53 | \( 1 + (-0.729 + 0.530i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-7.84 + 1.66i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + (-5.27 + 2.34i)T + (40.8 - 45.3i)T^{2} \) |
| 67 | \( 1 + (-2.92 - 5.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.66 - 5.56i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.34 + 13.3i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.14 - 10.9i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (1.24 - 0.556i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + (-0.862 - 8.20i)T + (-94.8 + 20.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63918531720483636255908670847, −9.600737831240384404485081963836, −8.590286442268777293937036322865, −7.50974469257793913183993660902, −6.85334176598138516949563543144, −6.37460816742549666309175196742, −5.26620668212842863655888525404, −3.97709971939137004679562882907, −2.47885661618552087298043627925, −2.21058739083045129476485213465,
1.05973239339167738258236659489, 1.81713596381233582483468384259, 3.80048538623248192805025457151, 4.24416071049026031512706242629, 5.49225556717972759420145268425, 6.37213039182549431993631535542, 7.57327473417837125750663133940, 8.253031642245758603927057083607, 8.823649820796953535378813767867, 9.956578039245776300568890379081