Properties

Label 2-8925-1.1-c1-0-172
Degree $2$
Conductor $8925$
Sign $-1$
Analytic cond. $71.2664$
Root an. cond. $8.44194$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.15·2-s − 3-s − 0.669·4-s − 1.15·6-s − 7-s − 3.07·8-s + 9-s − 3.62·11-s + 0.669·12-s − 1.69·13-s − 1.15·14-s − 2.21·16-s + 17-s + 1.15·18-s + 4.68·19-s + 21-s − 4.18·22-s − 6.53·23-s + 3.07·24-s − 1.95·26-s − 27-s + 0.669·28-s + 7.19·29-s + 8.65·31-s + 3.60·32-s + 3.62·33-s + 1.15·34-s + ⋯
L(s)  = 1  + 0.815·2-s − 0.577·3-s − 0.334·4-s − 0.470·6-s − 0.377·7-s − 1.08·8-s + 0.333·9-s − 1.09·11-s + 0.193·12-s − 0.469·13-s − 0.308·14-s − 0.553·16-s + 0.242·17-s + 0.271·18-s + 1.07·19-s + 0.218·21-s − 0.892·22-s − 1.36·23-s + 0.628·24-s − 0.382·26-s − 0.192·27-s + 0.126·28-s + 1.33·29-s + 1.55·31-s + 0.637·32-s + 0.631·33-s + 0.197·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8925\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(71.2664\)
Root analytic conductor: \(8.44194\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good2 \( 1 - 1.15T + 2T^{2} \)
11 \( 1 + 3.62T + 11T^{2} \)
13 \( 1 + 1.69T + 13T^{2} \)
19 \( 1 - 4.68T + 19T^{2} \)
23 \( 1 + 6.53T + 23T^{2} \)
29 \( 1 - 7.19T + 29T^{2} \)
31 \( 1 - 8.65T + 31T^{2} \)
37 \( 1 - 7.64T + 37T^{2} \)
41 \( 1 - 7.06T + 41T^{2} \)
43 \( 1 - 6.12T + 43T^{2} \)
47 \( 1 - 8.93T + 47T^{2} \)
53 \( 1 + 9.22T + 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 + 13.3T + 61T^{2} \)
67 \( 1 + 7.44T + 67T^{2} \)
71 \( 1 + 13.5T + 71T^{2} \)
73 \( 1 + 11.1T + 73T^{2} \)
79 \( 1 + 13.6T + 79T^{2} \)
83 \( 1 + 4.52T + 83T^{2} \)
89 \( 1 + 8.78T + 89T^{2} \)
97 \( 1 + 0.773T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43591763195621513007608749944, −6.38216637881303315925887004449, −5.85235365640584792872874946191, −5.41190991309337426700734117150, −4.41530909284753393729636229229, −4.30078053853130658607819987277, −2.90639307342141066115697905684, −2.70857677231952578070789131576, −1.04092561250382355655400728296, 0, 1.04092561250382355655400728296, 2.70857677231952578070789131576, 2.90639307342141066115697905684, 4.30078053853130658607819987277, 4.41530909284753393729636229229, 5.41190991309337426700734117150, 5.85235365640584792872874946191, 6.38216637881303315925887004449, 7.43591763195621513007608749944

Graph of the $Z$-function along the critical line