Properties

Label 2-8967-1.1-c1-0-244
Degree $2$
Conductor $8967$
Sign $1$
Analytic cond. $71.6018$
Root an. cond. $8.46178$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.647·2-s + 3-s − 1.58·4-s + 4.33·5-s − 0.647·6-s + 2.31·8-s + 9-s − 2.80·10-s + 1.61·11-s − 1.58·12-s + 2.02·13-s + 4.33·15-s + 1.66·16-s + 2.10·17-s − 0.647·18-s + 5.54·19-s − 6.85·20-s − 1.04·22-s − 5.14·23-s + 2.31·24-s + 13.8·25-s − 1.30·26-s + 27-s + 3.31·29-s − 2.80·30-s + 3.67·31-s − 5.71·32-s + ⋯
L(s)  = 1  − 0.457·2-s + 0.577·3-s − 0.790·4-s + 1.93·5-s − 0.264·6-s + 0.819·8-s + 0.333·9-s − 0.887·10-s + 0.488·11-s − 0.456·12-s + 0.560·13-s + 1.11·15-s + 0.415·16-s + 0.509·17-s − 0.152·18-s + 1.27·19-s − 1.53·20-s − 0.223·22-s − 1.07·23-s + 0.473·24-s + 2.76·25-s − 0.256·26-s + 0.192·27-s + 0.615·29-s − 0.512·30-s + 0.660·31-s − 1.00·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8967\)    =    \(3 \cdot 7^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(71.6018\)
Root analytic conductor: \(8.46178\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8967,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.140054739\)
\(L(\frac12)\) \(\approx\) \(3.140054739\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
61 \( 1 - T \)
good2 \( 1 + 0.647T + 2T^{2} \)
5 \( 1 - 4.33T + 5T^{2} \)
11 \( 1 - 1.61T + 11T^{2} \)
13 \( 1 - 2.02T + 13T^{2} \)
17 \( 1 - 2.10T + 17T^{2} \)
19 \( 1 - 5.54T + 19T^{2} \)
23 \( 1 + 5.14T + 23T^{2} \)
29 \( 1 - 3.31T + 29T^{2} \)
31 \( 1 - 3.67T + 31T^{2} \)
37 \( 1 + 4.58T + 37T^{2} \)
41 \( 1 - 2.88T + 41T^{2} \)
43 \( 1 - 0.0299T + 43T^{2} \)
47 \( 1 + 5.65T + 47T^{2} \)
53 \( 1 - 4.28T + 53T^{2} \)
59 \( 1 - 9.52T + 59T^{2} \)
67 \( 1 - 6.52T + 67T^{2} \)
71 \( 1 + 6.64T + 71T^{2} \)
73 \( 1 - 1.32T + 73T^{2} \)
79 \( 1 - 8.08T + 79T^{2} \)
83 \( 1 + 16.6T + 83T^{2} \)
89 \( 1 - 2.28T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.990538769935659746009889752016, −7.05580019200504559416244892263, −6.37572306040414924963332085974, −5.59452250189093238876940408779, −5.16254949014422588974777509531, −4.21224868466336976253898673903, −3.37328802933034581310491738411, −2.49455641641998271573229873452, −1.54665663382325354620745414728, −1.03133090111433855269362921970, 1.03133090111433855269362921970, 1.54665663382325354620745414728, 2.49455641641998271573229873452, 3.37328802933034581310491738411, 4.21224868466336976253898673903, 5.16254949014422588974777509531, 5.59452250189093238876940408779, 6.37572306040414924963332085974, 7.05580019200504559416244892263, 7.990538769935659746009889752016

Graph of the $Z$-function along the critical line