Properties

Label 2-8967-1.1-c1-0-378
Degree $2$
Conductor $8967$
Sign $1$
Analytic cond. $71.6018$
Root an. cond. $8.46178$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·2-s + 3-s + 4.31·4-s + 3.63·5-s + 2.51·6-s + 5.80·8-s + 9-s + 9.12·10-s + 3.40·11-s + 4.31·12-s − 0.598·13-s + 3.63·15-s + 5.96·16-s + 5.17·17-s + 2.51·18-s − 1.01·19-s + 15.6·20-s + 8.54·22-s − 6.86·23-s + 5.80·24-s + 8.19·25-s − 1.50·26-s + 27-s − 0.135·29-s + 9.12·30-s − 10.2·31-s + 3.36·32-s + ⋯
L(s)  = 1  + 1.77·2-s + 0.577·3-s + 2.15·4-s + 1.62·5-s + 1.02·6-s + 2.05·8-s + 0.333·9-s + 2.88·10-s + 1.02·11-s + 1.24·12-s − 0.166·13-s + 0.937·15-s + 1.49·16-s + 1.25·17-s + 0.592·18-s − 0.233·19-s + 3.50·20-s + 1.82·22-s − 1.43·23-s + 1.18·24-s + 1.63·25-s − 0.295·26-s + 0.192·27-s − 0.0251·29-s + 1.66·30-s − 1.83·31-s + 0.595·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8967\)    =    \(3 \cdot 7^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(71.6018\)
Root analytic conductor: \(8.46178\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8967,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(12.00126169\)
\(L(\frac12)\) \(\approx\) \(12.00126169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
61 \( 1 - T \)
good2 \( 1 - 2.51T + 2T^{2} \)
5 \( 1 - 3.63T + 5T^{2} \)
11 \( 1 - 3.40T + 11T^{2} \)
13 \( 1 + 0.598T + 13T^{2} \)
17 \( 1 - 5.17T + 17T^{2} \)
19 \( 1 + 1.01T + 19T^{2} \)
23 \( 1 + 6.86T + 23T^{2} \)
29 \( 1 + 0.135T + 29T^{2} \)
31 \( 1 + 10.2T + 31T^{2} \)
37 \( 1 + 6.41T + 37T^{2} \)
41 \( 1 + 4.51T + 41T^{2} \)
43 \( 1 - 5.55T + 43T^{2} \)
47 \( 1 - 7.98T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 - 4.83T + 59T^{2} \)
67 \( 1 + 6.56T + 67T^{2} \)
71 \( 1 - 10.8T + 71T^{2} \)
73 \( 1 - 2.87T + 73T^{2} \)
79 \( 1 + 12.5T + 79T^{2} \)
83 \( 1 + 5.83T + 83T^{2} \)
89 \( 1 - 0.137T + 89T^{2} \)
97 \( 1 + 6.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.35201175758867536186122339386, −6.82191005669625076391453247868, −6.04343161009260798595561978909, −5.68270730163596452345286613971, −5.08330884450896040304230508012, −4.10474553182551195243144756182, −3.59432988163549865502115182548, −2.78593758670667617375038713739, −1.94409169394273699981011499888, −1.53399091553144217920201981908, 1.53399091553144217920201981908, 1.94409169394273699981011499888, 2.78593758670667617375038713739, 3.59432988163549865502115182548, 4.10474553182551195243144756182, 5.08330884450896040304230508012, 5.68270730163596452345286613971, 6.04343161009260798595561978909, 6.82191005669625076391453247868, 7.35201175758867536186122339386

Graph of the $Z$-function along the critical line