Properties

Label 2-8967-1.1-c1-0-384
Degree $2$
Conductor $8967$
Sign $-1$
Analytic cond. $71.6018$
Root an. cond. $8.46178$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.17·2-s + 3-s + 2.70·4-s − 2·5-s + 2.17·6-s + 1.53·8-s + 9-s − 4.34·10-s − 1.70·11-s + 2.70·12-s − 3.07·13-s − 2·15-s − 2.07·16-s + 2.04·17-s + 2.17·18-s + 6.34·19-s − 5.41·20-s − 3.70·22-s + 0.447·23-s + 1.53·24-s − 25-s − 6.68·26-s + 27-s + 2.63·29-s − 4.34·30-s − 5.75·31-s − 7.58·32-s + ⋯
L(s)  = 1  + 1.53·2-s + 0.577·3-s + 1.35·4-s − 0.894·5-s + 0.885·6-s + 0.544·8-s + 0.333·9-s − 1.37·10-s − 0.515·11-s + 0.782·12-s − 0.853·13-s − 0.516·15-s − 0.519·16-s + 0.497·17-s + 0.511·18-s + 1.45·19-s − 1.21·20-s − 0.790·22-s + 0.0933·23-s + 0.314·24-s − 0.200·25-s − 1.31·26-s + 0.192·27-s + 0.488·29-s − 0.792·30-s − 1.03·31-s − 1.34·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8967\)    =    \(3 \cdot 7^{2} \cdot 61\)
Sign: $-1$
Analytic conductor: \(71.6018\)
Root analytic conductor: \(8.46178\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8967,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
61 \( 1 + T \)
good2 \( 1 - 2.17T + 2T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
11 \( 1 + 1.70T + 11T^{2} \)
13 \( 1 + 3.07T + 13T^{2} \)
17 \( 1 - 2.04T + 17T^{2} \)
19 \( 1 - 6.34T + 19T^{2} \)
23 \( 1 - 0.447T + 23T^{2} \)
29 \( 1 - 2.63T + 29T^{2} \)
31 \( 1 + 5.75T + 31T^{2} \)
37 \( 1 - 0.156T + 37T^{2} \)
41 \( 1 + 3.26T + 41T^{2} \)
43 \( 1 + 11.0T + 43T^{2} \)
47 \( 1 + 8.68T + 47T^{2} \)
53 \( 1 - 7.89T + 53T^{2} \)
59 \( 1 + 11.2T + 59T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 - 4.44T + 71T^{2} \)
73 \( 1 + 4.52T + 73T^{2} \)
79 \( 1 + 17.1T + 79T^{2} \)
83 \( 1 + 6.83T + 83T^{2} \)
89 \( 1 - 0.474T + 89T^{2} \)
97 \( 1 + 7.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.20616562397674870834530409821, −6.83893262910560982179436224160, −5.69526782407752027226891494208, −5.18507945916305674008483448244, −4.58936427401265781779536654962, −3.78568858961027381419516806241, −3.23409432533015309645311555457, −2.70171346229910020998626370830, −1.61531866054342729101698203875, 0, 1.61531866054342729101698203875, 2.70171346229910020998626370830, 3.23409432533015309645311555457, 3.78568858961027381419516806241, 4.58936427401265781779536654962, 5.18507945916305674008483448244, 5.69526782407752027226891494208, 6.83893262910560982179436224160, 7.20616562397674870834530409821

Graph of the $Z$-function along the critical line