Properties

Label 2-90-1.1-c17-0-26
Degree $2$
Conductor $90$
Sign $-1$
Analytic cond. $164.899$
Root an. cond. $12.8413$
Motivic weight $17$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 256·2-s + 6.55e4·4-s − 3.90e5·5-s + 2.54e7·7-s + 1.67e7·8-s − 1.00e8·10-s + 2.81e8·11-s − 1.52e9·13-s + 6.52e9·14-s + 4.29e9·16-s − 5.46e10·17-s + 6.88e8·19-s − 2.56e10·20-s + 7.19e10·22-s − 3.91e11·23-s + 1.52e11·25-s − 3.90e11·26-s + 1.66e12·28-s − 5.12e12·29-s − 7.31e10·31-s + 1.09e12·32-s − 1.40e13·34-s − 9.94e12·35-s − 6.81e12·37-s + 1.76e11·38-s − 6.55e12·40-s + 5.76e13·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.447·5-s + 1.66·7-s + 0.353·8-s − 0.316·10-s + 0.395·11-s − 0.518·13-s + 1.18·14-s + 0.250·16-s − 1.90·17-s + 0.00930·19-s − 0.223·20-s + 0.279·22-s − 1.04·23-s + 0.200·25-s − 0.366·26-s + 0.834·28-s − 1.90·29-s − 0.0153·31-s + 0.176·32-s − 1.34·34-s − 0.746·35-s − 0.319·37-s + 0.00658·38-s − 0.158·40-s + 1.12·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90\)    =    \(2 \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(164.899\)
Root analytic conductor: \(12.8413\)
Motivic weight: \(17\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 90,\ (\ :17/2),\ -1)\)

Particular Values

\(L(9)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 256T \)
3 \( 1 \)
5 \( 1 + 3.90e5T \)
good7 \( 1 - 2.54e7T + 2.32e14T^{2} \)
11 \( 1 - 2.81e8T + 5.05e17T^{2} \)
13 \( 1 + 1.52e9T + 8.65e18T^{2} \)
17 \( 1 + 5.46e10T + 8.27e20T^{2} \)
19 \( 1 - 6.88e8T + 5.48e21T^{2} \)
23 \( 1 + 3.91e11T + 1.41e23T^{2} \)
29 \( 1 + 5.12e12T + 7.25e24T^{2} \)
31 \( 1 + 7.31e10T + 2.25e25T^{2} \)
37 \( 1 + 6.81e12T + 4.56e26T^{2} \)
41 \( 1 - 5.76e13T + 2.61e27T^{2} \)
43 \( 1 - 7.57e13T + 5.87e27T^{2} \)
47 \( 1 - 4.60e13T + 2.66e28T^{2} \)
53 \( 1 + 6.58e14T + 2.05e29T^{2} \)
59 \( 1 - 2.98e14T + 1.27e30T^{2} \)
61 \( 1 - 8.50e14T + 2.24e30T^{2} \)
67 \( 1 + 6.12e15T + 1.10e31T^{2} \)
71 \( 1 + 5.41e14T + 2.96e31T^{2} \)
73 \( 1 + 7.16e15T + 4.74e31T^{2} \)
79 \( 1 - 5.45e15T + 1.81e32T^{2} \)
83 \( 1 - 3.64e15T + 4.21e32T^{2} \)
89 \( 1 + 6.81e14T + 1.37e33T^{2} \)
97 \( 1 + 1.20e17T + 5.95e33T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.87240597225341458370583411905, −9.151402147488928727143610649744, −8.006317745274464613336810654567, −7.14655732106693150956963974270, −5.77288038162781346548127874775, −4.60557347054621249984079715936, −4.04492778674989145131922890956, −2.36986098489442391095351470652, −1.56482642609729583024643234745, 0, 1.56482642609729583024643234745, 2.36986098489442391095351470652, 4.04492778674989145131922890956, 4.60557347054621249984079715936, 5.77288038162781346548127874775, 7.14655732106693150956963974270, 8.006317745274464613336810654567, 9.151402147488928727143610649744, 10.87240597225341458370583411905

Graph of the $Z$-function along the critical line