L(s) = 1 | + (−0.5 + 0.866i)2-s + (1.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + 1.73i·6-s + (0.5 − 0.866i)7-s + 0.999·8-s + (1.5 − 2.59i)9-s − 0.999·10-s + (−3 + 5.19i)11-s + (−1.49 − 0.866i)12-s + (−1 − 1.73i)13-s + (0.499 + 0.866i)14-s + (1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.866 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.223 + 0.387i)5-s + 0.707i·6-s + (0.188 − 0.327i)7-s + 0.353·8-s + (0.5 − 0.866i)9-s − 0.316·10-s + (−0.904 + 1.56i)11-s + (−0.433 − 0.250i)12-s + (−0.277 − 0.480i)13-s + (0.133 + 0.231i)14-s + (0.387 + 0.223i)15-s + (−0.125 + 0.216i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02091 + 0.180015i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02091 + 0.180015i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3 - 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (4.5 + 7.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 8T + 37T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 + 2.59i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.5 - 11.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 + (-5 + 8.66i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 + 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.56079602071985426039705926516, −13.20930217081189068297682058650, −12.45137356857302849413930973901, −10.50162404784282696573836333329, −9.747830227416623325614311522859, −8.321306931986745331309819886925, −7.48422726612557706065549337647, −6.45954662637191414006009843123, −4.55038068692036260792144174367, −2.33919010819884478167126981392,
2.37537030969457984752294204023, 3.93544610495337274078412802121, 5.57075319935115414868322336336, 7.83575954475383675984806026531, 8.641736633502856368430856265107, 9.612859932227793954121340908248, 10.68583135433577144212687711208, 11.76290228817964208844447116448, 13.27077342351155635351936184337, 13.74390613949249611289264562549