L(s) = 1 | + (4 − 4i)2-s − 32i·4-s + (75 + 100i)5-s + (−247 + 247i)7-s + (−128 − 128i)8-s + (700 + 100i)10-s − 1.40e3·11-s + (−2.70e3 − 2.70e3i)13-s + 1.97e3i·14-s − 1.02e3·16-s + (−2.59e3 + 2.59e3i)17-s − 1.72e3i·19-s + (3.20e3 − 2.40e3i)20-s + (−5.60e3 + 5.60e3i)22-s + (−2.13e3 − 2.13e3i)23-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s − 0.5i·4-s + (0.599 + 0.800i)5-s + (−0.720 + 0.720i)7-s + (−0.250 − 0.250i)8-s + (0.700 + 0.100i)10-s − 1.05·11-s + (−1.23 − 1.23i)13-s + 0.720i·14-s − 0.250·16-s + (−0.527 + 0.527i)17-s − 0.250i·19-s + (0.400 − 0.299i)20-s + (−0.526 + 0.526i)22-s + (−0.175 − 0.175i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.767 - 0.640i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.767 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(0.146057 + 0.402957i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.146057 + 0.402957i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 + 4i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-75 - 100i)T \) |
good | 7 | \( 1 + (247 - 247i)T - 1.17e5iT^{2} \) |
| 11 | \( 1 + 1.40e3T + 1.77e6T^{2} \) |
| 13 | \( 1 + (2.70e3 + 2.70e3i)T + 4.82e6iT^{2} \) |
| 17 | \( 1 + (2.59e3 - 2.59e3i)T - 2.41e7iT^{2} \) |
| 19 | \( 1 + 1.72e3iT - 4.70e7T^{2} \) |
| 23 | \( 1 + (2.13e3 + 2.13e3i)T + 1.48e8iT^{2} \) |
| 29 | \( 1 - 3.05e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 3.78e4T + 8.87e8T^{2} \) |
| 37 | \( 1 + (-3.71e4 + 3.71e4i)T - 2.56e9iT^{2} \) |
| 41 | \( 1 - 3.54e4T + 4.75e9T^{2} \) |
| 43 | \( 1 + (-3.91e4 - 3.91e4i)T + 6.32e9iT^{2} \) |
| 47 | \( 1 + (9.51e4 - 9.51e4i)T - 1.07e10iT^{2} \) |
| 53 | \( 1 + (3.60e4 + 3.60e4i)T + 2.21e10iT^{2} \) |
| 59 | \( 1 + 3.59e4iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 8.33e4T + 5.15e10T^{2} \) |
| 67 | \( 1 + (-6.08e4 + 6.08e4i)T - 9.04e10iT^{2} \) |
| 71 | \( 1 - 4.03e4T + 1.28e11T^{2} \) |
| 73 | \( 1 + (1.29e5 + 1.29e5i)T + 1.51e11iT^{2} \) |
| 79 | \( 1 + 5.24e5iT - 2.43e11T^{2} \) |
| 83 | \( 1 + (-1.14e5 - 1.14e5i)T + 3.26e11iT^{2} \) |
| 89 | \( 1 - 1.87e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + (-5.32e5 + 5.32e5i)T - 8.32e11iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.90659162306233259521310846468, −12.72080597963365331754577819678, −11.04082163577976276153011677282, −10.26051239797065738713836479426, −9.284889288292758594728136392404, −7.52732887570071554203270932564, −6.11846653768333266733256589490, −5.16219390518300436757912977727, −3.12002662920330230389779545959, −2.31554495773752701089792040816,
0.11476818580777645209833985475, 2.32740584311359197384466324035, 4.21443480897899988040819078917, 5.29347774804405597401155189830, 6.64327330575763261087224963082, 7.73875061616226159097258905986, 9.231953706310146854747662293979, 10.08364927269218266355360909840, 11.70760239852399642527844274708, 12.87212511669701196809198595644