L(s) = 1 | + (4 − 4i)2-s − 32i·4-s + (75 + 100i)5-s + (−247 + 247i)7-s + (−128 − 128i)8-s + (700 + 100i)10-s − 1.40e3·11-s + (−2.70e3 − 2.70e3i)13-s + 1.97e3i·14-s − 1.02e3·16-s + (−2.59e3 + 2.59e3i)17-s − 1.72e3i·19-s + (3.20e3 − 2.40e3i)20-s + (−5.60e3 + 5.60e3i)22-s + (−2.13e3 − 2.13e3i)23-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s − 0.5i·4-s + (0.599 + 0.800i)5-s + (−0.720 + 0.720i)7-s + (−0.250 − 0.250i)8-s + (0.700 + 0.100i)10-s − 1.05·11-s + (−1.23 − 1.23i)13-s + 0.720i·14-s − 0.250·16-s + (−0.527 + 0.527i)17-s − 0.250i·19-s + (0.400 − 0.299i)20-s + (−0.526 + 0.526i)22-s + (−0.175 − 0.175i)23-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(−0.767−0.640i)Λ(7−s)
Λ(s)=(=(90s/2ΓC(s+3)L(s)(−0.767−0.640i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
−0.767−0.640i
|
Analytic conductor: |
20.7048 |
Root analytic conductor: |
4.55026 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :3), −0.767−0.640i)
|
Particular Values
L(27) |
≈ |
0.146057+0.402957i |
L(21) |
≈ |
0.146057+0.402957i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+4i)T |
| 3 | 1 |
| 5 | 1+(−75−100i)T |
good | 7 | 1+(247−247i)T−1.17e5iT2 |
| 11 | 1+1.40e3T+1.77e6T2 |
| 13 | 1+(2.70e3+2.70e3i)T+4.82e6iT2 |
| 17 | 1+(2.59e3−2.59e3i)T−2.41e7iT2 |
| 19 | 1+1.72e3iT−4.70e7T2 |
| 23 | 1+(2.13e3+2.13e3i)T+1.48e8iT2 |
| 29 | 1−3.05e4iT−5.94e8T2 |
| 31 | 1+3.78e4T+8.87e8T2 |
| 37 | 1+(−3.71e4+3.71e4i)T−2.56e9iT2 |
| 41 | 1−3.54e4T+4.75e9T2 |
| 43 | 1+(−3.91e4−3.91e4i)T+6.32e9iT2 |
| 47 | 1+(9.51e4−9.51e4i)T−1.07e10iT2 |
| 53 | 1+(3.60e4+3.60e4i)T+2.21e10iT2 |
| 59 | 1+3.59e4iT−4.21e10T2 |
| 61 | 1−8.33e4T+5.15e10T2 |
| 67 | 1+(−6.08e4+6.08e4i)T−9.04e10iT2 |
| 71 | 1−4.03e4T+1.28e11T2 |
| 73 | 1+(1.29e5+1.29e5i)T+1.51e11iT2 |
| 79 | 1+5.24e5iT−2.43e11T2 |
| 83 | 1+(−1.14e5−1.14e5i)T+3.26e11iT2 |
| 89 | 1−1.87e5iT−4.96e11T2 |
| 97 | 1+(−5.32e5+5.32e5i)T−8.32e11iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.90659162306233259521310846468, −12.72080597963365331754577819678, −11.04082163577976276153011677282, −10.26051239797065738713836479426, −9.284889288292758594728136392404, −7.52732887570071554203270932564, −6.11846653768333266733256589490, −5.16219390518300436757912977727, −3.12002662920330230389779545959, −2.31554495773752701089792040816,
0.11476818580777645209833985475, 2.32740584311359197384466324035, 4.21443480897899988040819078917, 5.29347774804405597401155189830, 6.64327330575763261087224963082, 7.73875061616226159097258905986, 9.231953706310146854747662293979, 10.08364927269218266355360909840, 11.70760239852399642527844274708, 12.87212511669701196809198595644