L(s) = 1 | + (0.987 + 0.156i)2-s + (0.951 + 0.309i)4-s + (−0.453 + 0.891i)5-s + (0.891 + 0.453i)8-s + (−0.587 + 0.809i)10-s + (−0.142 − 0.896i)13-s + (0.809 + 0.587i)16-s + (−0.533 + 1.04i)17-s + (−0.707 + 0.707i)20-s + (−0.587 − 0.809i)25-s − 0.907i·26-s + (0.610 − 1.87i)29-s + (0.707 + 0.707i)32-s + (−0.690 + 0.951i)34-s + (−0.309 + 0.0489i)37-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)2-s + (0.951 + 0.309i)4-s + (−0.453 + 0.891i)5-s + (0.891 + 0.453i)8-s + (−0.587 + 0.809i)10-s + (−0.142 − 0.896i)13-s + (0.809 + 0.587i)16-s + (−0.533 + 1.04i)17-s + (−0.707 + 0.707i)20-s + (−0.587 − 0.809i)25-s − 0.907i·26-s + (0.610 − 1.87i)29-s + (0.707 + 0.707i)32-s + (−0.690 + 0.951i)34-s + (−0.309 + 0.0489i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.720−0.693i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.720−0.693i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.720−0.693i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(323,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.720−0.693i)
|
Particular Values
L(21) |
≈ |
1.678575946 |
L(21) |
≈ |
1.678575946 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.987−0.156i)T |
| 3 | 1 |
| 5 | 1+(0.453−0.891i)T |
good | 7 | 1+iT2 |
| 11 | 1+(0.309−0.951i)T2 |
| 13 | 1+(0.142+0.896i)T+(−0.951+0.309i)T2 |
| 17 | 1+(0.533−1.04i)T+(−0.587−0.809i)T2 |
| 19 | 1+(−0.809+0.587i)T2 |
| 23 | 1+(0.951+0.309i)T2 |
| 29 | 1+(−0.610+1.87i)T+(−0.809−0.587i)T2 |
| 31 | 1+(0.809−0.587i)T2 |
| 37 | 1+(0.309−0.0489i)T+(0.951−0.309i)T2 |
| 41 | 1+(1.04−1.44i)T+(−0.309−0.951i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(−0.587+0.809i)T2 |
| 53 | 1+(0.863+1.69i)T+(−0.587+0.809i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(−1.53+1.11i)T+(0.309−0.951i)T2 |
| 67 | 1+(−0.587−0.809i)T2 |
| 71 | 1+(−0.809−0.587i)T2 |
| 73 | 1+(1.76+0.278i)T+(0.951+0.309i)T2 |
| 79 | 1+(−0.809−0.587i)T2 |
| 83 | 1+(−0.587−0.809i)T2 |
| 89 | 1+(−0.253+0.183i)T+(0.309−0.951i)T2 |
| 97 | 1+(−0.896−1.76i)T+(−0.587+0.809i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50881760726300515051965708608, −9.977947496226990216364125933939, −8.268584491802090880412261008462, −7.87164508951141728687826455595, −6.71119540166231237884624369981, −6.23184802219006896851038236338, −5.10635235600885901129405361651, −4.04742927709698840884975793573, −3.22932875204371312786881908952, −2.17929036591852459450067450580,
1.52614360141319530145078660978, 2.91594584388946809654208969471, 4.09832610009877531153763933818, 4.80071572186294648993526789698, 5.57078962052024463958003650785, 6.82342914285369257813225379827, 7.37004033163099433186580630751, 8.629202309632283597076948980986, 9.305020314635783967264084711832, 10.43217491404989629776185589054