L(s) = 1 | + (0.891 − 0.453i)2-s + (0.587 − 0.809i)4-s + (0.987 + 0.156i)5-s + (0.156 − 0.987i)8-s + (0.951 − 0.309i)10-s + (−0.896 + 1.76i)13-s + (−0.309 − 0.951i)16-s + (−1.87 − 0.297i)17-s + (0.707 − 0.707i)20-s + (0.951 + 0.309i)25-s + 1.97i·26-s + (−1.44 − 1.04i)29-s + (−0.707 − 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 + 0.412i)37-s + ⋯ |
L(s) = 1 | + (0.891 − 0.453i)2-s + (0.587 − 0.809i)4-s + (0.987 + 0.156i)5-s + (0.156 − 0.987i)8-s + (0.951 − 0.309i)10-s + (−0.896 + 1.76i)13-s + (−0.309 − 0.951i)16-s + (−1.87 − 0.297i)17-s + (0.707 − 0.707i)20-s + (0.951 + 0.309i)25-s + 1.97i·26-s + (−1.44 − 1.04i)29-s + (−0.707 − 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 + 0.412i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.762+0.647i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.762+0.647i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.762+0.647i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(503,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.762+0.647i)
|
Particular Values
L(21) |
≈ |
1.783483901 |
L(21) |
≈ |
1.783483901 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.891+0.453i)T |
| 3 | 1 |
| 5 | 1+(−0.987−0.156i)T |
good | 7 | 1+iT2 |
| 11 | 1+(−0.809−0.587i)T2 |
| 13 | 1+(0.896−1.76i)T+(−0.587−0.809i)T2 |
| 17 | 1+(1.87+0.297i)T+(0.951+0.309i)T2 |
| 19 | 1+(0.309−0.951i)T2 |
| 23 | 1+(0.587−0.809i)T2 |
| 29 | 1+(1.44+1.04i)T+(0.309+0.951i)T2 |
| 31 | 1+(−0.309+0.951i)T2 |
| 37 | 1+(−0.809−0.412i)T+(0.587+0.809i)T2 |
| 41 | 1+(−0.297+0.0966i)T+(0.809−0.587i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(0.951−0.309i)T2 |
| 53 | 1+(−1.16+0.183i)T+(0.951−0.309i)T2 |
| 59 | 1+(0.809−0.587i)T2 |
| 61 | 1+(0.363−1.11i)T+(−0.809−0.587i)T2 |
| 67 | 1+(0.951+0.309i)T2 |
| 71 | 1+(0.309+0.951i)T2 |
| 73 | 1+(0.278−0.142i)T+(0.587−0.809i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(0.951+0.309i)T2 |
| 89 | 1+(−0.280+0.863i)T+(−0.809−0.587i)T2 |
| 97 | 1+(1.76−0.278i)T+(0.951−0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26200786481254251915715518334, −9.495164798497544813885698392455, −8.961132016459778387106406467879, −7.22408626738866596027990801597, −6.65431196213229251477929329147, −5.82409855472728154804306542907, −4.76275111215434283344644030924, −4.08292346278167262587104018299, −2.48451853843052787941143155655, −1.94411884950686831028261501544,
2.10943664465414073280822298894, 3.01163886995903842155519242580, 4.36469933681150109980861661041, 5.27942561312977249183062576581, 5.89526077755966659292296768195, 6.84713562938236125333663758988, 7.68104740642207546812769486796, 8.655757768446618748027378154981, 9.505827637465213051821098236912, 10.62468654645593219656399147934