L(s) = 1 | + (0.156 + 0.987i)2-s + (−0.951 + 0.309i)4-s + (0.891 − 0.453i)5-s + (−0.453 − 0.891i)8-s + (0.587 + 0.809i)10-s + (1.76 + 0.278i)13-s + (0.809 − 0.587i)16-s + (−1.04 + 0.533i)17-s + (−0.707 + 0.707i)20-s + (0.587 − 0.809i)25-s + 1.78i·26-s + (0.0966 + 0.297i)29-s + (0.707 + 0.707i)32-s + (−0.690 − 0.951i)34-s + (−0.309 + 1.95i)37-s + ⋯ |
L(s) = 1 | + (0.156 + 0.987i)2-s + (−0.951 + 0.309i)4-s + (0.891 − 0.453i)5-s + (−0.453 − 0.891i)8-s + (0.587 + 0.809i)10-s + (1.76 + 0.278i)13-s + (0.809 − 0.587i)16-s + (−1.04 + 0.533i)17-s + (−0.707 + 0.707i)20-s + (0.587 − 0.809i)25-s + 1.78i·26-s + (0.0966 + 0.297i)29-s + (0.707 + 0.707i)32-s + (−0.690 − 0.951i)34-s + (−0.309 + 1.95i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.414−0.910i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.414−0.910i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.414−0.910i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(863,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.414−0.910i)
|
Particular Values
L(21) |
≈ |
1.152744168 |
L(21) |
≈ |
1.152744168 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.156−0.987i)T |
| 3 | 1 |
| 5 | 1+(−0.891+0.453i)T |
good | 7 | 1+iT2 |
| 11 | 1+(0.309+0.951i)T2 |
| 13 | 1+(−1.76−0.278i)T+(0.951+0.309i)T2 |
| 17 | 1+(1.04−0.533i)T+(0.587−0.809i)T2 |
| 19 | 1+(−0.809−0.587i)T2 |
| 23 | 1+(−0.951+0.309i)T2 |
| 29 | 1+(−0.0966−0.297i)T+(−0.809+0.587i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(0.309−1.95i)T+(−0.951−0.309i)T2 |
| 41 | 1+(0.533+0.734i)T+(−0.309+0.951i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(0.587+0.809i)T2 |
| 53 | 1+(1.69+0.863i)T+(0.587+0.809i)T2 |
| 59 | 1+(−0.309+0.951i)T2 |
| 61 | 1+(1.53+1.11i)T+(0.309+0.951i)T2 |
| 67 | 1+(0.587−0.809i)T2 |
| 71 | 1+(−0.809+0.587i)T2 |
| 73 | 1+(−0.142−0.896i)T+(−0.951+0.309i)T2 |
| 79 | 1+(−0.809+0.587i)T2 |
| 83 | 1+(0.587−0.809i)T2 |
| 89 | 1+(−1.59−1.16i)T+(0.309+0.951i)T2 |
| 97 | 1+(0.278+0.142i)T+(0.587+0.809i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27806617809088493124075167601, −9.353378054353480921367976532972, −8.639364442852992271471443491798, −8.162640236360913201672480780507, −6.63612003352339336720646976819, −6.36383063511847993771795300422, −5.34819804157165677354586926108, −4.47051309866663367470360684068, −3.38825623036177170445340059149, −1.57849827473773916319013860730,
1.46904284801375981271767337577, 2.61660621865662822810301276553, 3.59926867647159677820974377101, 4.69790736560695027299841178247, 5.82195635514294145329020053793, 6.40561592206042947213489246935, 7.78619071324657404583788211471, 8.991983916961511232150284117240, 9.248312181297600262050032034655, 10.48991026934516877344822898162