L(s) = 1 | + (0.156 + 0.987i)2-s + (−0.951 + 0.309i)4-s + (0.891 − 0.453i)5-s + (−0.453 − 0.891i)8-s + (0.587 + 0.809i)10-s + (1.76 + 0.278i)13-s + (0.809 − 0.587i)16-s + (−1.04 + 0.533i)17-s + (−0.707 + 0.707i)20-s + (0.587 − 0.809i)25-s + 1.78i·26-s + (0.0966 + 0.297i)29-s + (0.707 + 0.707i)32-s + (−0.690 − 0.951i)34-s + (−0.309 + 1.95i)37-s + ⋯ |
L(s) = 1 | + (0.156 + 0.987i)2-s + (−0.951 + 0.309i)4-s + (0.891 − 0.453i)5-s + (−0.453 − 0.891i)8-s + (0.587 + 0.809i)10-s + (1.76 + 0.278i)13-s + (0.809 − 0.587i)16-s + (−1.04 + 0.533i)17-s + (−0.707 + 0.707i)20-s + (0.587 − 0.809i)25-s + 1.78i·26-s + (0.0966 + 0.297i)29-s + (0.707 + 0.707i)32-s + (−0.690 − 0.951i)34-s + (−0.309 + 1.95i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.414 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.414 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.152744168\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.152744168\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.156 - 0.987i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.891 + 0.453i)T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-1.76 - 0.278i)T + (0.951 + 0.309i)T^{2} \) |
| 17 | \( 1 + (1.04 - 0.533i)T + (0.587 - 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 29 | \( 1 + (-0.0966 - 0.297i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.309 - 1.95i)T + (-0.951 - 0.309i)T^{2} \) |
| 41 | \( 1 + (0.533 + 0.734i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 53 | \( 1 + (1.69 + 0.863i)T + (0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.142 - 0.896i)T + (-0.951 + 0.309i)T^{2} \) |
| 79 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 + (-1.59 - 1.16i)T + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (0.278 + 0.142i)T + (0.587 + 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27806617809088493124075167601, −9.353378054353480921367976532972, −8.639364442852992271471443491798, −8.162640236360913201672480780507, −6.63612003352339336720646976819, −6.36383063511847993771795300422, −5.34819804157165677354586926108, −4.47051309866663367470360684068, −3.38825623036177170445340059149, −1.57849827473773916319013860730,
1.46904284801375981271767337577, 2.61660621865662822810301276553, 3.59926867647159677820974377101, 4.69790736560695027299841178247, 5.82195635514294145329020053793, 6.40561592206042947213489246935, 7.78619071324657404583788211471, 8.991983916961511232150284117240, 9.248312181297600262050032034655, 10.48991026934516877344822898162