Properties

Label 2-30e2-20.7-c1-0-40
Degree $2$
Conductor $900$
Sign $-0.525 + 0.850i$
Analytic cond. $7.18653$
Root an. cond. $2.68077$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − i)2-s − 2i·4-s + (3 − 3i)7-s + (−2 − 2i)8-s − 6i·14-s − 4·16-s + (1 + i)23-s + (−6 − 6i)28-s − 6i·29-s + (−4 + 4i)32-s − 12·41-s + (9 + 9i)43-s + 2·46-s + (7 − 7i)47-s − 11i·49-s + ⋯
L(s)  = 1  + (0.707 − 0.707i)2-s i·4-s + (1.13 − 1.13i)7-s + (−0.707 − 0.707i)8-s − 1.60i·14-s − 16-s + (0.208 + 0.208i)23-s + (−1.13 − 1.13i)28-s − 1.11i·29-s + (−0.707 + 0.707i)32-s − 1.87·41-s + (1.37 + 1.37i)43-s + 0.294·46-s + (1.02 − 1.02i)47-s − 1.57i·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.525 + 0.850i$
Analytic conductor: \(7.18653\)
Root analytic conductor: \(2.68077\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{900} (307, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 900,\ (\ :1/2),\ -0.525 + 0.850i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.16867 - 2.09613i\)
\(L(\frac12)\) \(\approx\) \(1.16867 - 2.09613i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1 + i)T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + (-3 + 3i)T - 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 13iT^{2} \)
17 \( 1 + 17iT^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + (-1 - i)T + 23iT^{2} \)
29 \( 1 + 6iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 + 37iT^{2} \)
41 \( 1 + 12T + 41T^{2} \)
43 \( 1 + (-9 - 9i)T + 43iT^{2} \)
47 \( 1 + (-7 + 7i)T - 47iT^{2} \)
53 \( 1 - 53iT^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 + (-3 + 3i)T - 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 - 73iT^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + (-11 - 11i)T + 83iT^{2} \)
89 \( 1 + 6iT - 89T^{2} \)
97 \( 1 + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16343299952444866717723104132, −9.195762203984399164701767355218, −8.078992412830036582370007384411, −7.24056898474944006872413298440, −6.21313502162534461243512833285, −5.10961798185405734893363398190, −4.40357451549800893699039208209, −3.54007083781514542106327202164, −2.14267014497467420032854894666, −0.966108576971304450391810362719, 1.98528519039804122427485905946, 3.12451912343664057647706000647, 4.41505097194284748975876512516, 5.21858616755767649957089447804, 5.86220419260858020584297175769, 6.95046358721728681067822128429, 7.80471716672948027902564736696, 8.642548864725372871977947213908, 9.109383217348625344383205361102, 10.59099966305573573881295562982

Graph of the $Z$-function along the critical line