L(s) = 1 | + (1 − i)2-s − 2i·4-s + (3 − 3i)7-s + (−2 − 2i)8-s − 6i·14-s − 4·16-s + (1 + i)23-s + (−6 − 6i)28-s − 6i·29-s + (−4 + 4i)32-s − 12·41-s + (9 + 9i)43-s + 2·46-s + (7 − 7i)47-s − 11i·49-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − i·4-s + (1.13 − 1.13i)7-s + (−0.707 − 0.707i)8-s − 1.60i·14-s − 16-s + (0.208 + 0.208i)23-s + (−1.13 − 1.13i)28-s − 1.11i·29-s + (−0.707 + 0.707i)32-s − 1.87·41-s + (1.37 + 1.37i)43-s + 0.294·46-s + (1.02 − 1.02i)47-s − 1.57i·49-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.525+0.850i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(−0.525+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
−0.525+0.850i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :1/2), −0.525+0.850i)
|
Particular Values
L(1) |
≈ |
1.16867−2.09613i |
L(21) |
≈ |
1.16867−2.09613i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1+i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−3+3i)T−7iT2 |
| 11 | 1−11T2 |
| 13 | 1−13iT2 |
| 17 | 1+17iT2 |
| 19 | 1+19T2 |
| 23 | 1+(−1−i)T+23iT2 |
| 29 | 1+6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+37iT2 |
| 41 | 1+12T+41T2 |
| 43 | 1+(−9−9i)T+43iT2 |
| 47 | 1+(−7+7i)T−47iT2 |
| 53 | 1−53iT2 |
| 59 | 1+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1+(−3+3i)T−67iT2 |
| 71 | 1−71T2 |
| 73 | 1−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(−11−11i)T+83iT2 |
| 89 | 1+6iT−89T2 |
| 97 | 1+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16343299952444866717723104132, −9.195762203984399164701767355218, −8.078992412830036582370007384411, −7.24056898474944006872413298440, −6.21313502162534461243512833285, −5.10961798185405734893363398190, −4.40357451549800893699039208209, −3.54007083781514542106327202164, −2.14267014497467420032854894666, −0.966108576971304450391810362719,
1.98528519039804122427485905946, 3.12451912343664057647706000647, 4.41505097194284748975876512516, 5.21858616755767649957089447804, 5.86220419260858020584297175769, 6.95046358721728681067822128429, 7.80471716672948027902564736696, 8.642548864725372871977947213908, 9.109383217348625344383205361102, 10.59099966305573573881295562982