L(s) = 1 | + (0.0912 − 1.41i)2-s + (−1.98 − 0.257i)4-s + (1.86 − 1.86i)7-s + (−0.544 + 2.77i)8-s + 0.728i·11-s + (3.12 − 3.12i)13-s + (−2.46 − 2.80i)14-s + (3.86 + 1.02i)16-s + (1.12 + 1.12i)17-s + 3.73·19-s + (1.02 + 0.0664i)22-s + (−5.83 − 5.83i)23-s + (−4.12 − 4.69i)26-s + (−4.18 + 3.22i)28-s + 2.64i·29-s + ⋯ |
L(s) = 1 | + (0.0645 − 0.997i)2-s + (−0.991 − 0.128i)4-s + (0.705 − 0.705i)7-s + (−0.192 + 0.981i)8-s + 0.219i·11-s + (0.866 − 0.866i)13-s + (−0.658 − 0.749i)14-s + (0.966 + 0.255i)16-s + (0.272 + 0.272i)17-s + 0.856·19-s + (0.219 + 0.0141i)22-s + (−1.21 − 1.21i)23-s + (−0.808 − 0.920i)26-s + (−0.790 + 0.608i)28-s + 0.490i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.630 + 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.630 + 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.649389 - 1.36505i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.649389 - 1.36505i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0912 + 1.41i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.86 + 1.86i)T - 7iT^{2} \) |
| 11 | \( 1 - 0.728iT - 11T^{2} \) |
| 13 | \( 1 + (-3.12 + 3.12i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.12 - 1.12i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.73T + 19T^{2} \) |
| 23 | \( 1 + (5.83 + 5.83i)T + 23iT^{2} \) |
| 29 | \( 1 - 2.64iT - 29T^{2} \) |
| 31 | \( 1 + 6.01iT - 31T^{2} \) |
| 37 | \( 1 + (3.12 + 3.12i)T + 37iT^{2} \) |
| 41 | \( 1 - 4.24T + 41T^{2} \) |
| 43 | \( 1 + (5.10 + 5.10i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.09 + 2.09i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.484 + 0.484i)T - 53iT^{2} \) |
| 59 | \( 1 + 4.92T + 59T^{2} \) |
| 61 | \( 1 - 2.31T + 61T^{2} \) |
| 67 | \( 1 + (-5.10 + 5.10i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.1iT - 71T^{2} \) |
| 73 | \( 1 + (3.96 - 3.96i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.11T + 79T^{2} \) |
| 83 | \( 1 + (-3.55 - 3.55i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.03iT - 89T^{2} \) |
| 97 | \( 1 + (-12.5 - 12.5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16362498585803973166751835264, −9.085231477389253999679052987318, −8.187728452726754815942955934293, −7.59770542747819315788189140428, −6.13009330122418530002101818622, −5.19073321394700387419946595816, −4.20288612528679100498303044975, −3.40488182811004410832130632834, −2.04441903337989233496878090304, −0.797338722993198515233733876793,
1.51151734728592028831414450572, 3.30092923139598956347071398899, 4.36992275868305774741173123142, 5.37697203694032111347849946711, 6.00060169103528016177791257832, 7.01456429584995192934994143230, 7.918863362942762123258545870473, 8.581607048872550030586544591517, 9.330409892996151581880536377006, 10.13687584049148305250368386981