L(s) = 1 | + (0.0912 − 1.41i)2-s + (−1.98 − 0.257i)4-s + (1.86 − 1.86i)7-s + (−0.544 + 2.77i)8-s + 0.728i·11-s + (3.12 − 3.12i)13-s + (−2.46 − 2.80i)14-s + (3.86 + 1.02i)16-s + (1.12 + 1.12i)17-s + 3.73·19-s + (1.02 + 0.0664i)22-s + (−5.83 − 5.83i)23-s + (−4.12 − 4.69i)26-s + (−4.18 + 3.22i)28-s + 2.64i·29-s + ⋯ |
L(s) = 1 | + (0.0645 − 0.997i)2-s + (−0.991 − 0.128i)4-s + (0.705 − 0.705i)7-s + (−0.192 + 0.981i)8-s + 0.219i·11-s + (0.866 − 0.866i)13-s + (−0.658 − 0.749i)14-s + (0.966 + 0.255i)16-s + (0.272 + 0.272i)17-s + 0.856·19-s + (0.219 + 0.0141i)22-s + (−1.21 − 1.21i)23-s + (−0.808 − 0.920i)26-s + (−0.790 + 0.608i)28-s + 0.490i·29-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.630+0.775i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(−0.630+0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
−0.630+0.775i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :1/2), −0.630+0.775i)
|
Particular Values
L(1) |
≈ |
0.649389−1.36505i |
L(21) |
≈ |
0.649389−1.36505i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0912+1.41i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−1.86+1.86i)T−7iT2 |
| 11 | 1−0.728iT−11T2 |
| 13 | 1+(−3.12+3.12i)T−13iT2 |
| 17 | 1+(−1.12−1.12i)T+17iT2 |
| 19 | 1−3.73T+19T2 |
| 23 | 1+(5.83+5.83i)T+23iT2 |
| 29 | 1−2.64iT−29T2 |
| 31 | 1+6.01iT−31T2 |
| 37 | 1+(3.12+3.12i)T+37iT2 |
| 41 | 1−4.24T+41T2 |
| 43 | 1+(5.10+5.10i)T+43iT2 |
| 47 | 1+(−2.09+2.09i)T−47iT2 |
| 53 | 1+(−0.484+0.484i)T−53iT2 |
| 59 | 1+4.92T+59T2 |
| 61 | 1−2.31T+61T2 |
| 67 | 1+(−5.10+5.10i)T−67iT2 |
| 71 | 1+13.1iT−71T2 |
| 73 | 1+(3.96−3.96i)T−73iT2 |
| 79 | 1+7.11T+79T2 |
| 83 | 1+(−3.55−3.55i)T+83iT2 |
| 89 | 1−1.03iT−89T2 |
| 97 | 1+(−12.5−12.5i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16362498585803973166751835264, −9.085231477389253999679052987318, −8.187728452726754815942955934293, −7.59770542747819315788189140428, −6.13009330122418530002101818622, −5.19073321394700387419946595816, −4.20288612528679100498303044975, −3.40488182811004410832130632834, −2.04441903337989233496878090304, −0.797338722993198515233733876793,
1.51151734728592028831414450572, 3.30092923139598956347071398899, 4.36992275868305774741173123142, 5.37697203694032111347849946711, 6.00060169103528016177791257832, 7.01456429584995192934994143230, 7.918863362942762123258545870473, 8.581607048872550030586544591517, 9.330409892996151581880536377006, 10.13687584049148305250368386981