L(s) = 1 | + 3.61·7-s + 11-s − 4.23·13-s − 2.85·17-s − 1.76·19-s + 4.70·23-s + 6.23·29-s − 10.0·31-s − 6.23·37-s − 2.09·41-s + 9.85·43-s − 2.23·47-s + 6.09·49-s + 3.38·53-s + 5.14·59-s − 2.85·61-s + 10.4·67-s + 9.56·71-s + 5.85·73-s + 3.61·77-s + 13.7·79-s + 12.0·83-s + 11·89-s − 15.3·91-s − 7.79·97-s + 16.9·101-s + 7.38·103-s + ⋯ |
L(s) = 1 | + 1.36·7-s + 0.301·11-s − 1.17·13-s − 0.692·17-s − 0.404·19-s + 0.981·23-s + 1.15·29-s − 1.81·31-s − 1.02·37-s − 0.326·41-s + 1.50·43-s − 0.326·47-s + 0.870·49-s + 0.464·53-s + 0.669·59-s − 0.365·61-s + 1.27·67-s + 1.13·71-s + 0.685·73-s + 0.412·77-s + 1.54·79-s + 1.32·83-s + 1.16·89-s − 1.60·91-s − 0.791·97-s + 1.68·101-s + 0.727·103-s + ⋯ |
Λ(s)=(=(9000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.253938509 |
L(21) |
≈ |
2.253938509 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−3.61T+7T2 |
| 11 | 1−T+11T2 |
| 13 | 1+4.23T+13T2 |
| 17 | 1+2.85T+17T2 |
| 19 | 1+1.76T+19T2 |
| 23 | 1−4.70T+23T2 |
| 29 | 1−6.23T+29T2 |
| 31 | 1+10.0T+31T2 |
| 37 | 1+6.23T+37T2 |
| 41 | 1+2.09T+41T2 |
| 43 | 1−9.85T+43T2 |
| 47 | 1+2.23T+47T2 |
| 53 | 1−3.38T+53T2 |
| 59 | 1−5.14T+59T2 |
| 61 | 1+2.85T+61T2 |
| 67 | 1−10.4T+67T2 |
| 71 | 1−9.56T+71T2 |
| 73 | 1−5.85T+73T2 |
| 79 | 1−13.7T+79T2 |
| 83 | 1−12.0T+83T2 |
| 89 | 1−11T+89T2 |
| 97 | 1+7.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77288916589702870102809899529, −7.04572919765603936892131118034, −6.56912221184652781840814351901, −5.38947060420747885596139063092, −5.02935715778046591858223521669, −4.36883671080791157387114132842, −3.53481967717745791530523888771, −2.39349678620666597099252761861, −1.88111596377499958923950916183, −0.72624096277977009652866925385,
0.72624096277977009652866925385, 1.88111596377499958923950916183, 2.39349678620666597099252761861, 3.53481967717745791530523888771, 4.36883671080791157387114132842, 5.02935715778046591858223521669, 5.38947060420747885596139063092, 6.56912221184652781840814351901, 7.04572919765603936892131118034, 7.77288916589702870102809899529