L(s) = 1 | + 1.09·2-s − 0.379·3-s − 0.795·4-s − 0.416·6-s − 1.89·7-s − 3.06·8-s − 2.85·9-s + 0.134·11-s + 0.301·12-s + 3.51·13-s − 2.07·14-s − 1.77·16-s + 1.66·17-s − 3.13·18-s + 0.718·21-s + 0.147·22-s − 5.36·23-s + 1.16·24-s + 3.85·26-s + 2.22·27-s + 1.50·28-s − 4.97·29-s − 6.56·31-s + 4.18·32-s − 0.0509·33-s + 1.82·34-s + 2.27·36-s + ⋯ |
L(s) = 1 | + 0.776·2-s − 0.219·3-s − 0.397·4-s − 0.169·6-s − 0.715·7-s − 1.08·8-s − 0.952·9-s + 0.0405·11-s + 0.0871·12-s + 0.974·13-s − 0.555·14-s − 0.443·16-s + 0.402·17-s − 0.738·18-s + 0.156·21-s + 0.0314·22-s − 1.11·23-s + 0.237·24-s + 0.756·26-s + 0.427·27-s + 0.284·28-s − 0.923·29-s − 1.17·31-s + 0.740·32-s − 0.00887·33-s + 0.312·34-s + 0.378·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.044192705\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.044192705\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - 1.09T + 2T^{2} \) |
| 3 | \( 1 + 0.379T + 3T^{2} \) |
| 7 | \( 1 + 1.89T + 7T^{2} \) |
| 11 | \( 1 - 0.134T + 11T^{2} \) |
| 13 | \( 1 - 3.51T + 13T^{2} \) |
| 17 | \( 1 - 1.66T + 17T^{2} \) |
| 23 | \( 1 + 5.36T + 23T^{2} \) |
| 29 | \( 1 + 4.97T + 29T^{2} \) |
| 31 | \( 1 + 6.56T + 31T^{2} \) |
| 37 | \( 1 + 1.69T + 37T^{2} \) |
| 41 | \( 1 + 10.6T + 41T^{2} \) |
| 43 | \( 1 + 8.50T + 43T^{2} \) |
| 47 | \( 1 - 11.1T + 47T^{2} \) |
| 53 | \( 1 + 0.264T + 53T^{2} \) |
| 59 | \( 1 - 6.89T + 59T^{2} \) |
| 61 | \( 1 - 9.17T + 61T^{2} \) |
| 67 | \( 1 + 2.95T + 67T^{2} \) |
| 71 | \( 1 + 1.32T + 71T^{2} \) |
| 73 | \( 1 - 6.34T + 73T^{2} \) |
| 79 | \( 1 - 1.46T + 79T^{2} \) |
| 83 | \( 1 + 7.44T + 83T^{2} \) |
| 89 | \( 1 + 9.73T + 89T^{2} \) |
| 97 | \( 1 - 17.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75245173297456023729064232334, −6.73651728789592967421646594614, −6.20516162008581465675773202700, −5.52042224366305680110764744337, −5.22647917266468075162048015474, −4.01865613232690361214707742783, −3.60962161464734653995688031979, −2.98549848272529657281961996394, −1.86559124902586477304134607381, −0.42699641486266994228717594978,
0.42699641486266994228717594978, 1.86559124902586477304134607381, 2.98549848272529657281961996394, 3.60962161464734653995688031979, 4.01865613232690361214707742783, 5.22647917266468075162048015474, 5.52042224366305680110764744337, 6.20516162008581465675773202700, 6.73651728789592967421646594614, 7.75245173297456023729064232334