L(s) = 1 | + 1.09·2-s − 0.379·3-s − 0.795·4-s − 0.416·6-s − 1.89·7-s − 3.06·8-s − 2.85·9-s + 0.134·11-s + 0.301·12-s + 3.51·13-s − 2.07·14-s − 1.77·16-s + 1.66·17-s − 3.13·18-s + 0.718·21-s + 0.147·22-s − 5.36·23-s + 1.16·24-s + 3.85·26-s + 2.22·27-s + 1.50·28-s − 4.97·29-s − 6.56·31-s + 4.18·32-s − 0.0509·33-s + 1.82·34-s + 2.27·36-s + ⋯ |
L(s) = 1 | + 0.776·2-s − 0.219·3-s − 0.397·4-s − 0.169·6-s − 0.715·7-s − 1.08·8-s − 0.952·9-s + 0.0405·11-s + 0.0871·12-s + 0.974·13-s − 0.555·14-s − 0.443·16-s + 0.402·17-s − 0.738·18-s + 0.156·21-s + 0.0314·22-s − 1.11·23-s + 0.237·24-s + 0.756·26-s + 0.427·27-s + 0.284·28-s − 0.923·29-s − 1.17·31-s + 0.740·32-s − 0.00887·33-s + 0.312·34-s + 0.378·36-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.044192705 |
L(21) |
≈ |
1.044192705 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1−1.09T+2T2 |
| 3 | 1+0.379T+3T2 |
| 7 | 1+1.89T+7T2 |
| 11 | 1−0.134T+11T2 |
| 13 | 1−3.51T+13T2 |
| 17 | 1−1.66T+17T2 |
| 23 | 1+5.36T+23T2 |
| 29 | 1+4.97T+29T2 |
| 31 | 1+6.56T+31T2 |
| 37 | 1+1.69T+37T2 |
| 41 | 1+10.6T+41T2 |
| 43 | 1+8.50T+43T2 |
| 47 | 1−11.1T+47T2 |
| 53 | 1+0.264T+53T2 |
| 59 | 1−6.89T+59T2 |
| 61 | 1−9.17T+61T2 |
| 67 | 1+2.95T+67T2 |
| 71 | 1+1.32T+71T2 |
| 73 | 1−6.34T+73T2 |
| 79 | 1−1.46T+79T2 |
| 83 | 1+7.44T+83T2 |
| 89 | 1+9.73T+89T2 |
| 97 | 1−17.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.75245173297456023729064232334, −6.73651728789592967421646594614, −6.20516162008581465675773202700, −5.52042224366305680110764744337, −5.22647917266468075162048015474, −4.01865613232690361214707742783, −3.60962161464734653995688031979, −2.98549848272529657281961996394, −1.86559124902586477304134607381, −0.42699641486266994228717594978,
0.42699641486266994228717594978, 1.86559124902586477304134607381, 2.98549848272529657281961996394, 3.60962161464734653995688031979, 4.01865613232690361214707742783, 5.22647917266468075162048015474, 5.52042224366305680110764744337, 6.20516162008581465675773202700, 6.73651728789592967421646594614, 7.75245173297456023729064232334