Properties

Label 2-95e2-1.1-c1-0-398
Degree $2$
Conductor $9025$
Sign $-1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.17·2-s + 1.41·3-s + 2.70·4-s − 3.06·6-s + 1.76·7-s − 1.53·8-s − 1.00·9-s + 1.83·11-s + 3.82·12-s + 2.60·13-s − 3.82·14-s − 2.07·16-s − 4.23·17-s + 2.17·18-s + 2.48·21-s − 3.98·22-s + 2.20·23-s − 2.17·24-s − 5.65·26-s − 5.65·27-s + 4.77·28-s − 7.12·29-s + 0.303·31-s + 7.58·32-s + 2.59·33-s + 9.19·34-s − 2.72·36-s + ⋯
L(s)  = 1  − 1.53·2-s + 0.815·3-s + 1.35·4-s − 1.25·6-s + 0.665·7-s − 0.544·8-s − 0.334·9-s + 0.554·11-s + 1.10·12-s + 0.722·13-s − 1.02·14-s − 0.519·16-s − 1.02·17-s + 0.513·18-s + 0.543·21-s − 0.850·22-s + 0.459·23-s − 0.443·24-s − 1.10·26-s − 1.08·27-s + 0.902·28-s − 1.32·29-s + 0.0545·31-s + 1.34·32-s + 0.452·33-s + 1.57·34-s − 0.453·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 + 2.17T + 2T^{2} \)
3 \( 1 - 1.41T + 3T^{2} \)
7 \( 1 - 1.76T + 7T^{2} \)
11 \( 1 - 1.83T + 11T^{2} \)
13 \( 1 - 2.60T + 13T^{2} \)
17 \( 1 + 4.23T + 17T^{2} \)
23 \( 1 - 2.20T + 23T^{2} \)
29 \( 1 + 7.12T + 29T^{2} \)
31 \( 1 - 0.303T + 31T^{2} \)
37 \( 1 + 3.90T + 37T^{2} \)
41 \( 1 - 8.23T + 41T^{2} \)
43 \( 1 + 2.34T + 43T^{2} \)
47 \( 1 - 7.25T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 + 12.0T + 59T^{2} \)
61 \( 1 - 10.5T + 61T^{2} \)
67 \( 1 + 13.0T + 67T^{2} \)
71 \( 1 - 11.8T + 71T^{2} \)
73 \( 1 - 9.16T + 73T^{2} \)
79 \( 1 - 7.88T + 79T^{2} \)
83 \( 1 + 6.93T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + 7.75T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76146004534449371008594931157, −6.99577866705735556029100078398, −6.35048419859340212909899857638, −5.45903684032668128762472405691, −4.44698210388984906393047338145, −3.70264609540462482961027922819, −2.71381159475707967836875432660, −1.93853977782619403454249606637, −1.27766268809669061371292809971, 0, 1.27766268809669061371292809971, 1.93853977782619403454249606637, 2.71381159475707967836875432660, 3.70264609540462482961027922819, 4.44698210388984906393047338145, 5.45903684032668128762472405691, 6.35048419859340212909899857638, 6.99577866705735556029100078398, 7.76146004534449371008594931157

Graph of the $Z$-function along the critical line