L(s) = 1 | − 2.17·2-s + 1.41·3-s + 2.70·4-s − 3.06·6-s + 1.76·7-s − 1.53·8-s − 1.00·9-s + 1.83·11-s + 3.82·12-s + 2.60·13-s − 3.82·14-s − 2.07·16-s − 4.23·17-s + 2.17·18-s + 2.48·21-s − 3.98·22-s + 2.20·23-s − 2.17·24-s − 5.65·26-s − 5.65·27-s + 4.77·28-s − 7.12·29-s + 0.303·31-s + 7.58·32-s + 2.59·33-s + 9.19·34-s − 2.72·36-s + ⋯ |
L(s) = 1 | − 1.53·2-s + 0.815·3-s + 1.35·4-s − 1.25·6-s + 0.665·7-s − 0.544·8-s − 0.334·9-s + 0.554·11-s + 1.10·12-s + 0.722·13-s − 1.02·14-s − 0.519·16-s − 1.02·17-s + 0.513·18-s + 0.543·21-s − 0.850·22-s + 0.459·23-s − 0.443·24-s − 1.10·26-s − 1.08·27-s + 0.902·28-s − 1.32·29-s + 0.0545·31-s + 1.34·32-s + 0.452·33-s + 1.57·34-s − 0.453·36-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+2.17T+2T2 |
| 3 | 1−1.41T+3T2 |
| 7 | 1−1.76T+7T2 |
| 11 | 1−1.83T+11T2 |
| 13 | 1−2.60T+13T2 |
| 17 | 1+4.23T+17T2 |
| 23 | 1−2.20T+23T2 |
| 29 | 1+7.12T+29T2 |
| 31 | 1−0.303T+31T2 |
| 37 | 1+3.90T+37T2 |
| 41 | 1−8.23T+41T2 |
| 43 | 1+2.34T+43T2 |
| 47 | 1−7.25T+47T2 |
| 53 | 1+10.6T+53T2 |
| 59 | 1+12.0T+59T2 |
| 61 | 1−10.5T+61T2 |
| 67 | 1+13.0T+67T2 |
| 71 | 1−11.8T+71T2 |
| 73 | 1−9.16T+73T2 |
| 79 | 1−7.88T+79T2 |
| 83 | 1+6.93T+83T2 |
| 89 | 1+12.4T+89T2 |
| 97 | 1+7.75T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.76146004534449371008594931157, −6.99577866705735556029100078398, −6.35048419859340212909899857638, −5.45903684032668128762472405691, −4.44698210388984906393047338145, −3.70264609540462482961027922819, −2.71381159475707967836875432660, −1.93853977782619403454249606637, −1.27766268809669061371292809971, 0,
1.27766268809669061371292809971, 1.93853977782619403454249606637, 2.71381159475707967836875432660, 3.70264609540462482961027922819, 4.44698210388984906393047338145, 5.45903684032668128762472405691, 6.35048419859340212909899857638, 6.99577866705735556029100078398, 7.76146004534449371008594931157