L(s) = 1 | + 3·5-s − 7-s − 6·11-s + 2·13-s − 6·17-s + 7·19-s + 3·23-s + 4·25-s − 6·29-s − 2·31-s − 3·35-s + 2·37-s − 2·43-s + 49-s − 6·53-s − 18·55-s + 5·61-s + 6·65-s − 8·67-s + 3·71-s + 2·73-s + 6·77-s − 5·79-s + 12·83-s − 18·85-s − 2·91-s + 21·95-s + ⋯ |
L(s) = 1 | + 1.34·5-s − 0.377·7-s − 1.80·11-s + 0.554·13-s − 1.45·17-s + 1.60·19-s + 0.625·23-s + 4/5·25-s − 1.11·29-s − 0.359·31-s − 0.507·35-s + 0.328·37-s − 0.304·43-s + 1/7·49-s − 0.824·53-s − 2.42·55-s + 0.640·61-s + 0.744·65-s − 0.977·67-s + 0.356·71-s + 0.234·73-s + 0.683·77-s − 0.562·79-s + 1.31·83-s − 1.95·85-s − 0.209·91-s + 2.15·95-s + ⋯ |
Λ(s)=(=(9072s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9072s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1−3T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−7T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+5T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.38476819275535999135405240527, −6.62509384532045389466627231804, −5.94865854409924744021641850334, −5.31974849755602342170659656944, −4.92966912255533521295876588044, −3.73180535825492880643668007815, −2.83036173067638134574426817684, −2.30854670098554420017510854630, −1.36002060033091265869350334541, 0,
1.36002060033091265869350334541, 2.30854670098554420017510854630, 2.83036173067638134574426817684, 3.73180535825492880643668007815, 4.92966912255533521295876588044, 5.31974849755602342170659656944, 5.94865854409924744021641850334, 6.62509384532045389466627231804, 7.38476819275535999135405240527