Properties

Label 2-9072-1.1-c1-0-119
Degree $2$
Conductor $9072$
Sign $-1$
Analytic cond. $72.4402$
Root an. cond. $8.51118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 7-s − 6·11-s + 2·13-s − 6·17-s + 7·19-s + 3·23-s + 4·25-s − 6·29-s − 2·31-s − 3·35-s + 2·37-s − 2·43-s + 49-s − 6·53-s − 18·55-s + 5·61-s + 6·65-s − 8·67-s + 3·71-s + 2·73-s + 6·77-s − 5·79-s + 12·83-s − 18·85-s − 2·91-s + 21·95-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.377·7-s − 1.80·11-s + 0.554·13-s − 1.45·17-s + 1.60·19-s + 0.625·23-s + 4/5·25-s − 1.11·29-s − 0.359·31-s − 0.507·35-s + 0.328·37-s − 0.304·43-s + 1/7·49-s − 0.824·53-s − 2.42·55-s + 0.640·61-s + 0.744·65-s − 0.977·67-s + 0.356·71-s + 0.234·73-s + 0.683·77-s − 0.562·79-s + 1.31·83-s − 1.95·85-s − 0.209·91-s + 2.15·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9072 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9072\)    =    \(2^{4} \cdot 3^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(72.4402\)
Root analytic conductor: \(8.51118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9072,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 5 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38476819275535999135405240527, −6.62509384532045389466627231804, −5.94865854409924744021641850334, −5.31974849755602342170659656944, −4.92966912255533521295876588044, −3.73180535825492880643668007815, −2.83036173067638134574426817684, −2.30854670098554420017510854630, −1.36002060033091265869350334541, 0, 1.36002060033091265869350334541, 2.30854670098554420017510854630, 2.83036173067638134574426817684, 3.73180535825492880643668007815, 4.92966912255533521295876588044, 5.31974849755602342170659656944, 5.94865854409924744021641850334, 6.62509384532045389466627231804, 7.38476819275535999135405240527

Graph of the $Z$-function along the critical line