Properties

Label 2-9075-1.1-c1-0-296
Degree $2$
Conductor $9075$
Sign $-1$
Analytic cond. $72.4642$
Root an. cond. $8.51259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s + 3-s + 3.00·4-s − 2.23·6-s − 2.23·8-s + 9-s + 3.00·12-s + 4.47·13-s − 0.999·16-s + 4.47·17-s − 2.23·18-s − 4·23-s − 2.23·24-s − 10.0·26-s + 27-s + 8.94·29-s + 6.70·32-s − 10.0·34-s + 3.00·36-s − 8·37-s + 4.47·39-s − 8.94·41-s − 8.94·43-s + 8.94·46-s − 12·47-s − 0.999·48-s − 7·49-s + ⋯
L(s)  = 1  − 1.58·2-s + 0.577·3-s + 1.50·4-s − 0.912·6-s − 0.790·8-s + 0.333·9-s + 0.866·12-s + 1.24·13-s − 0.249·16-s + 1.08·17-s − 0.527·18-s − 0.834·23-s − 0.456·24-s − 1.96·26-s + 0.192·27-s + 1.66·29-s + 1.18·32-s − 1.71·34-s + 0.500·36-s − 1.31·37-s + 0.716·39-s − 1.39·41-s − 1.36·43-s + 1.31·46-s − 1.75·47-s − 0.144·48-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9075\)    =    \(3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(72.4642\)
Root analytic conductor: \(8.51259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9075,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 + 2.23T + 2T^{2} \)
7 \( 1 + 7T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 8.94T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 8T + 37T^{2} \)
41 \( 1 + 8.94T + 41T^{2} \)
43 \( 1 + 8.94T + 43T^{2} \)
47 \( 1 + 12T + 47T^{2} \)
53 \( 1 + 4T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 13.4T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80278173322157830797801385462, −6.70888002838016970656254523077, −6.57248491214522218758261382077, −5.44617139214084470328659213103, −4.54611268597233469243734731239, −3.50017786910678437681853352710, −2.95685868549119713049748979334, −1.69794876246781604892432061821, −1.34160496575824051053339498352, 0, 1.34160496575824051053339498352, 1.69794876246781604892432061821, 2.95685868549119713049748979334, 3.50017786910678437681853352710, 4.54611268597233469243734731239, 5.44617139214084470328659213103, 6.57248491214522218758261382077, 6.70888002838016970656254523077, 7.80278173322157830797801385462

Graph of the $Z$-function along the critical line