L(s) = 1 | + (0.425 + 0.737i)2-s + 0.661·3-s + (0.637 − 1.10i)4-s + (−1.72 + 2.98i)5-s + (0.281 + 0.487i)6-s + (1.82 − 1.91i)7-s + 2.78·8-s − 2.56·9-s − 2.92·10-s − 0.897·11-s + (0.421 − 0.730i)12-s + (−3.07 − 1.88i)13-s + (2.18 + 0.525i)14-s + (−1.13 + 1.97i)15-s + (−0.0891 − 0.154i)16-s + (−0.968 + 1.67i)17-s + ⋯ |
L(s) = 1 | + (0.300 + 0.521i)2-s + 0.381·3-s + (0.318 − 0.552i)4-s + (−0.769 + 1.33i)5-s + (0.114 + 0.198i)6-s + (0.688 − 0.725i)7-s + 0.985·8-s − 0.854·9-s − 0.926·10-s − 0.270·11-s + (0.121 − 0.210i)12-s + (−0.852 − 0.522i)13-s + (0.585 + 0.140i)14-s + (−0.293 + 0.508i)15-s + (−0.0222 − 0.0386i)16-s + (−0.234 + 0.406i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17060 + 0.350081i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17060 + 0.350081i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-1.82 + 1.91i)T \) |
| 13 | \( 1 + (3.07 + 1.88i)T \) |
good | 2 | \( 1 + (-0.425 - 0.737i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 - 0.661T + 3T^{2} \) |
| 5 | \( 1 + (1.72 - 2.98i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 0.897T + 11T^{2} \) |
| 17 | \( 1 + (0.968 - 1.67i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 1.03T + 19T^{2} \) |
| 23 | \( 1 + (2.82 + 4.89i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.917 + 1.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.56 - 7.91i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.30 - 9.17i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.66 + 4.61i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.95 - 3.39i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.59 - 6.22i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.69 - 8.12i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.255 + 0.442i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 1.43T + 61T^{2} \) |
| 67 | \( 1 + 8.44T + 67T^{2} \) |
| 71 | \( 1 + (-1.72 - 2.98i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.45 + 9.44i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.04 + 10.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.51T + 83T^{2} \) |
| 89 | \( 1 + (6.80 + 11.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.253 + 0.438i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.52875663996914739134406325524, −13.69426330326917635776142310814, −11.85223180675114560978710229113, −10.83610598699277088580969288796, −10.23783547267479541796982520916, −8.128445280838652079945059846146, −7.37622698324790937842623975584, −6.24132413699861190837959589029, −4.59994424967326469857119611745, −2.80729778271699423842019959130,
2.37414593614358078020455315650, 4.13412758953910039249696777954, 5.31339248127785475489640391337, 7.64071654156067761968538923123, 8.328433463263302207206998795737, 9.387815397312900323903601476874, 11.45232025200309658110770882044, 11.76456721465226781299846671936, 12.71433126338250883585854738774, 13.78353178314597347441636827529