L(s) = 1 | + (0.425 + 0.737i)2-s + 0.661·3-s + (0.637 − 1.10i)4-s + (−1.72 + 2.98i)5-s + (0.281 + 0.487i)6-s + (1.82 − 1.91i)7-s + 2.78·8-s − 2.56·9-s − 2.92·10-s − 0.897·11-s + (0.421 − 0.730i)12-s + (−3.07 − 1.88i)13-s + (2.18 + 0.525i)14-s + (−1.13 + 1.97i)15-s + (−0.0891 − 0.154i)16-s + (−0.968 + 1.67i)17-s + ⋯ |
L(s) = 1 | + (0.300 + 0.521i)2-s + 0.381·3-s + (0.318 − 0.552i)4-s + (−0.769 + 1.33i)5-s + (0.114 + 0.198i)6-s + (0.688 − 0.725i)7-s + 0.985·8-s − 0.854·9-s − 0.926·10-s − 0.270·11-s + (0.121 − 0.210i)12-s + (−0.852 − 0.522i)13-s + (0.585 + 0.140i)14-s + (−0.293 + 0.508i)15-s + (−0.0222 − 0.0386i)16-s + (−0.234 + 0.406i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(0.835−0.549i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(0.835−0.549i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
0.835−0.549i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), 0.835−0.549i)
|
Particular Values
L(1) |
≈ |
1.17060+0.350081i |
L(21) |
≈ |
1.17060+0.350081i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−1.82+1.91i)T |
| 13 | 1+(3.07+1.88i)T |
good | 2 | 1+(−0.425−0.737i)T+(−1+1.73i)T2 |
| 3 | 1−0.661T+3T2 |
| 5 | 1+(1.72−2.98i)T+(−2.5−4.33i)T2 |
| 11 | 1+0.897T+11T2 |
| 17 | 1+(0.968−1.67i)T+(−8.5−14.7i)T2 |
| 19 | 1−1.03T+19T2 |
| 23 | 1+(2.82+4.89i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.917+1.58i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−4.56−7.91i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−5.30−9.17i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.66+4.61i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1.95−3.39i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.59−6.22i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.69−8.12i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.255+0.442i)T+(−29.5−51.0i)T2 |
| 61 | 1−1.43T+61T2 |
| 67 | 1+8.44T+67T2 |
| 71 | 1+(−1.72−2.98i)T+(−35.5+61.4i)T2 |
| 73 | 1+(5.45+9.44i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−6.04+10.4i)T+(−39.5−68.4i)T2 |
| 83 | 1−1.51T+83T2 |
| 89 | 1+(6.80+11.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+(0.253+0.438i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.52875663996914739134406325524, −13.69426330326917635776142310814, −11.85223180675114560978710229113, −10.83610598699277088580969288796, −10.23783547267479541796982520916, −8.128445280838652079945059846146, −7.37622698324790937842623975584, −6.24132413699861190837959589029, −4.59994424967326469857119611745, −2.80729778271699423842019959130,
2.37414593614358078020455315650, 4.13412758953910039249696777954, 5.31339248127785475489640391337, 7.64071654156067761968538923123, 8.328433463263302207206998795737, 9.387815397312900323903601476874, 11.45232025200309658110770882044, 11.76456721465226781299846671936, 12.71433126338250883585854738774, 13.78353178314597347441636827529