L(s) = 1 | + 3-s + 2·5-s + 9-s + 4·11-s + 2·13-s + 2·15-s − 6·17-s + 19-s + 4·23-s − 25-s + 27-s − 2·29-s − 4·31-s + 4·33-s + 10·37-s + 2·39-s + 10·41-s − 4·43-s + 2·45-s + 4·47-s − 7·49-s − 6·51-s − 10·53-s + 8·55-s + 57-s − 12·59-s + 14·61-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.516·15-s − 1.45·17-s + 0.229·19-s + 0.834·23-s − 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.696·33-s + 1.64·37-s + 0.320·39-s + 1.56·41-s − 0.609·43-s + 0.298·45-s + 0.583·47-s − 49-s − 0.840·51-s − 1.37·53-s + 1.07·55-s + 0.132·57-s − 1.56·59-s + 1.79·61-s + ⋯ |
Λ(s)=(=(912s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(912s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.388472434 |
L(21) |
≈ |
2.388472434 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 19 | 1−T |
good | 5 | 1−2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.786869452003372550002449800084, −9.259741991745774642651687902060, −8.686112233403729699672924385749, −7.54920325839787930805373575681, −6.57061735757055000239038218298, −5.95928356394221873345303919204, −4.65672229415455481414222119791, −3.72816659383691276241941645312, −2.47746893642927435624182028712, −1.41228664440352179477085709942,
1.41228664440352179477085709942, 2.47746893642927435624182028712, 3.72816659383691276241941645312, 4.65672229415455481414222119791, 5.95928356394221873345303919204, 6.57061735757055000239038218298, 7.54920325839787930805373575681, 8.686112233403729699672924385749, 9.259741991745774642651687902060, 9.786869452003372550002449800084