L(s) = 1 | + (−1.63 + 0.578i)3-s + (3.06 − 1.77i)5-s − 0.587i·7-s + (2.33 − 1.88i)9-s + 3.00·11-s + (0.973 − 1.68i)13-s + (−3.98 + 4.66i)15-s + (−1.36 + 0.790i)17-s + (−4.34 + 0.308i)19-s + (0.339 + 0.958i)21-s + (1.35 − 2.34i)23-s + (3.77 − 6.53i)25-s + (−2.71 + 4.43i)27-s + (−4.59 − 2.65i)29-s − 4.43i·31-s + ⋯ |
L(s) = 1 | + (−0.942 + 0.334i)3-s + (1.37 − 0.792i)5-s − 0.221i·7-s + (0.776 − 0.629i)9-s + 0.907·11-s + (0.270 − 0.467i)13-s + (−1.02 + 1.20i)15-s + (−0.332 + 0.191i)17-s + (−0.997 + 0.0708i)19-s + (0.0741 + 0.209i)21-s + (0.282 − 0.489i)23-s + (0.755 − 1.30i)25-s + (−0.521 + 0.853i)27-s + (−0.853 − 0.492i)29-s − 0.796i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.661 + 0.750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.661 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36744 - 0.617582i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36744 - 0.617582i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.63 - 0.578i)T \) |
| 19 | \( 1 + (4.34 - 0.308i)T \) |
good | 5 | \( 1 + (-3.06 + 1.77i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 0.587iT - 7T^{2} \) |
| 11 | \( 1 - 3.00T + 11T^{2} \) |
| 13 | \( 1 + (-0.973 + 1.68i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.36 - 0.790i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.35 + 2.34i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.59 + 2.65i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.43iT - 31T^{2} \) |
| 37 | \( 1 - 6.60T + 37T^{2} \) |
| 41 | \( 1 + (7.82 - 4.51i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.77 + 3.33i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.48 + 6.04i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.87 - 2.23i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.23 - 12.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0261 - 0.0452i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.662 - 0.382i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.86 + 10.1i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.10 + 7.10i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.80 + 4.50i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 13.6T + 83T^{2} \) |
| 89 | \( 1 + (-9.20 - 5.31i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.27 + 9.13i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06374981432198386061664182628, −9.231081947623991504225608702297, −8.642838095583336036722364687016, −7.20131790753437029930209091980, −6.11574566203348228897596286811, −5.85607306235441448771107767763, −4.72565174717648865833608717094, −3.95597920907342368681478845265, −2.09632308093831023530984691213, −0.881667555365772276509913209512,
1.47434735285282500159144770709, 2.41989158121715399048575913955, 3.98920725365769689052836782460, 5.22446344997549000318523586231, 6.03189830846442877591548567043, 6.62416244931708244944332844557, 7.24328740243148399629837901468, 8.739359205950761350775602435235, 9.504457908948121806267695970761, 10.29844984609416264293869150494