L(s) = 1 | + (0.5 + 0.866i)3-s + (1.61 + 2.80i)5-s + 0.236·7-s + (−0.499 + 0.866i)9-s − 1.23·11-s + (−1.73 + 3.00i)13-s + (−1.61 + 2.80i)15-s + (2 + 3.46i)17-s + (2 − 3.87i)19-s + (0.118 + 0.204i)21-s + (−1.61 + 2.80i)23-s + (−2.73 + 4.73i)25-s − 0.999·27-s + (0.763 − 1.32i)29-s − 4.70·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.723 + 1.25i)5-s + 0.0892·7-s + (−0.166 + 0.288i)9-s − 0.372·11-s + (−0.481 + 0.833i)13-s + (−0.417 + 0.723i)15-s + (0.485 + 0.840i)17-s + (0.458 − 0.888i)19-s + (0.0257 + 0.0446i)21-s + (−0.337 + 0.584i)23-s + (−0.547 + 0.947i)25-s − 0.192·27-s + (0.141 − 0.245i)29-s − 0.845·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.350 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.350 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.01631 + 1.46481i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.01631 + 1.46481i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-2 + 3.87i)T \) |
good | 5 | \( 1 + (-1.61 - 2.80i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 0.236T + 7T^{2} \) |
| 11 | \( 1 + 1.23T + 11T^{2} \) |
| 13 | \( 1 + (1.73 - 3.00i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2 - 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.61 - 2.80i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.763 + 1.32i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.70T + 31T^{2} \) |
| 37 | \( 1 - 7T + 37T^{2} \) |
| 41 | \( 1 + (-1.23 - 2.14i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.11 + 5.40i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1 - 1.73i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.09 + 10.5i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.85 - 3.21i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.5 - 9.52i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.118 + 0.204i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.70 - 11.6i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1.73 + 3.00i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.35 - 7.54i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8T + 83T^{2} \) |
| 89 | \( 1 + (1.85 - 3.21i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.47 + 9.47i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13399776935186439355640863415, −9.777789779337289564322620719782, −8.836142704416614207796811355792, −7.72755338302268406553574860076, −6.95313215642196970539009319786, −6.05875306575123657779597952658, −5.13550403045609545257108180870, −3.92887413543731129132071031276, −2.90343944155485468094149055854, −1.99200086209394277531004927186,
0.818424559902287417909515217833, 2.03250585942389258428320908531, 3.23780754328352990311882803979, 4.73492290755602753462477433700, 5.41859457540538921849144409051, 6.24277121651706730038955874782, 7.60126922674867054101081898856, 8.041273905611339544678974883222, 9.069286635562052429131356775889, 9.663639648684703617882564489892