Properties

Label 2-9196-1.1-c1-0-121
Degree $2$
Conductor $9196$
Sign $1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.74·3-s + 3.77·5-s + 2.22·7-s + 4.54·9-s − 0.380·13-s + 10.3·15-s − 3.15·17-s − 19-s + 6.11·21-s + 7.90·23-s + 9.22·25-s + 4.25·27-s + 5.59·29-s − 3.96·31-s + 8.40·35-s + 3.34·37-s − 1.04·39-s − 0.889·41-s − 8.46·43-s + 17.1·45-s − 3.67·47-s − 2.03·49-s − 8.67·51-s − 3.93·53-s − 2.74·57-s + 11.0·59-s + 3.65·61-s + ⋯
L(s)  = 1  + 1.58·3-s + 1.68·5-s + 0.841·7-s + 1.51·9-s − 0.105·13-s + 2.67·15-s − 0.765·17-s − 0.229·19-s + 1.33·21-s + 1.64·23-s + 1.84·25-s + 0.818·27-s + 1.03·29-s − 0.711·31-s + 1.42·35-s + 0.550·37-s − 0.167·39-s − 0.138·41-s − 1.29·43-s + 2.55·45-s − 0.535·47-s − 0.291·49-s − 1.21·51-s − 0.540·53-s − 0.363·57-s + 1.43·59-s + 0.467·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.359350279\)
\(L(\frac12)\) \(\approx\) \(6.359350279\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2.74T + 3T^{2} \)
5 \( 1 - 3.77T + 5T^{2} \)
7 \( 1 - 2.22T + 7T^{2} \)
13 \( 1 + 0.380T + 13T^{2} \)
17 \( 1 + 3.15T + 17T^{2} \)
23 \( 1 - 7.90T + 23T^{2} \)
29 \( 1 - 5.59T + 29T^{2} \)
31 \( 1 + 3.96T + 31T^{2} \)
37 \( 1 - 3.34T + 37T^{2} \)
41 \( 1 + 0.889T + 41T^{2} \)
43 \( 1 + 8.46T + 43T^{2} \)
47 \( 1 + 3.67T + 47T^{2} \)
53 \( 1 + 3.93T + 53T^{2} \)
59 \( 1 - 11.0T + 59T^{2} \)
61 \( 1 - 3.65T + 61T^{2} \)
67 \( 1 - 6.20T + 67T^{2} \)
71 \( 1 - 0.936T + 71T^{2} \)
73 \( 1 + 6.15T + 73T^{2} \)
79 \( 1 - 16.9T + 79T^{2} \)
83 \( 1 + 13.2T + 83T^{2} \)
89 \( 1 + 9.43T + 89T^{2} \)
97 \( 1 + 0.252T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.983684158002400648924638820969, −6.87891992994048795512271173583, −6.68765373178044645991306864085, −5.50431714950552015813196172562, −4.97767625921620834846331265845, −4.20453037994023675395290340062, −3.12365431968958579966715075698, −2.55753853962685482497504991573, −1.89514336849928055213932642352, −1.27104225946315378946476584209, 1.27104225946315378946476584209, 1.89514336849928055213932642352, 2.55753853962685482497504991573, 3.12365431968958579966715075698, 4.20453037994023675395290340062, 4.97767625921620834846331265845, 5.50431714950552015813196172562, 6.68765373178044645991306864085, 6.87891992994048795512271173583, 7.983684158002400648924638820969

Graph of the $Z$-function along the critical line