L(s) = 1 | + (2.52 − 3.10i)2-s − 12.4i·3-s + (−3.23 − 15.6i)4-s + 20.1·5-s + (−38.6 − 31.4i)6-s − 36.3i·7-s + (−56.7 − 29.5i)8-s − 73.9·9-s + (50.9 − 62.5i)10-s + 85.5i·11-s + (−195. + 40.2i)12-s + 308.·13-s + (−112. − 91.8i)14-s − 251. i·15-s + (−235. + 101. i)16-s − 305.·17-s + ⋯ |
L(s) = 1 | + (0.631 − 0.775i)2-s − 1.38i·3-s + (−0.202 − 0.979i)4-s + 0.806·5-s + (−1.07 − 0.873i)6-s − 0.742i·7-s + (−0.887 − 0.461i)8-s − 0.913·9-s + (0.509 − 0.625i)10-s + 0.707i·11-s + (−1.35 + 0.279i)12-s + 1.82·13-s + (−0.575 − 0.468i)14-s − 1.11i·15-s + (−0.918 + 0.396i)16-s − 1.05·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 + 0.202i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.258164 - 2.52631i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.258164 - 2.52631i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.52 + 3.10i)T \) |
| 23 | \( 1 + 110. iT \) |
good | 3 | \( 1 + 12.4iT - 81T^{2} \) |
| 5 | \( 1 - 20.1T + 625T^{2} \) |
| 7 | \( 1 + 36.3iT - 2.40e3T^{2} \) |
| 11 | \( 1 - 85.5iT - 1.46e4T^{2} \) |
| 13 | \( 1 - 308.T + 2.85e4T^{2} \) |
| 17 | \( 1 + 305.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 565. iT - 1.30e5T^{2} \) |
| 29 | \( 1 - 1.14e3T + 7.07e5T^{2} \) |
| 31 | \( 1 + 974. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 905.T + 1.87e6T^{2} \) |
| 41 | \( 1 + 845.T + 2.82e6T^{2} \) |
| 43 | \( 1 + 372. iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 287. iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 2.02e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 6.49e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 1.96e3T + 1.38e7T^{2} \) |
| 67 | \( 1 - 1.56e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 - 2.09e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 257.T + 2.83e7T^{2} \) |
| 79 | \( 1 - 8.38e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 5.12e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 8.75e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 1.62e4T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06284685958894387418345084275, −12.02626470216955048285771599351, −10.86538290036252561547757373542, −9.832568428614136526144869209115, −8.282961292380900329197923878478, −6.68193562130927385205852588424, −5.94708697287877985479663908112, −4.04105283717787176386311730264, −2.10263779653695119573849941076, −1.10411101377099053317363725551,
2.99886358995618689399676895194, 4.39409267869817461818129180418, 5.56082471961373864314958853380, 6.47614479019614829863615688561, 8.702470441317923365861366239547, 9.036073723064408444756031234329, 10.63031295925142747290004832471, 11.59558726458795556732684047992, 13.29546017225696914201050520992, 13.80199737975976133405810309689