L(s) = 1 | − 2·3-s + 4·7-s + 2·9-s − 2·11-s + 4·17-s − 2·19-s − 8·21-s + 2·23-s − 6·27-s − 8·29-s + 8·31-s + 4·33-s + 18·37-s + 6·41-s − 14·43-s − 10·47-s + 3·49-s − 8·51-s − 2·53-s + 4·57-s − 2·59-s − 10·61-s + 8·63-s − 8·67-s − 4·69-s − 20·71-s − 10·73-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.51·7-s + 2/3·9-s − 0.603·11-s + 0.970·17-s − 0.458·19-s − 1.74·21-s + 0.417·23-s − 1.15·27-s − 1.48·29-s + 1.43·31-s + 0.696·33-s + 2.95·37-s + 0.937·41-s − 2.13·43-s − 1.45·47-s + 3/7·49-s − 1.12·51-s − 0.274·53-s + 0.529·57-s − 0.260·59-s − 1.28·61-s + 1.00·63-s − 0.977·67-s − 0.481·69-s − 2.37·71-s − 1.17·73-s + ⋯ |
Λ(s)=(=(84640000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(84640000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
84640000
= 28⋅54⋅232
|
Sign: |
1
|
Analytic conductor: |
5396.71 |
Root analytic conductor: |
8.57101 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 84640000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 23 | C1 | (1−T)2 |
good | 3 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 7 | D4 | 1−4T+13T2−4pT3+p2T4 |
| 11 | C2 | (1+T+pT2)2 |
| 13 | C22 | 1+21T2+p2T4 |
| 17 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 19 | C2 | (1+T+pT2)2 |
| 29 | D4 | 1+8T+69T2+8pT3+p2T4 |
| 31 | D4 | 1−8T+58T2−8pT3+p2T4 |
| 37 | D4 | 1−18T+150T2−18pT3+p2T4 |
| 41 | D4 | 1−6T+11T2−6pT3+p2T4 |
| 43 | D4 | 1+14T+115T2+14pT3+p2T4 |
| 47 | D4 | 1+10T+74T2+10pT3+p2T4 |
| 53 | D4 | 1+2T+102T2+2pT3+p2T4 |
| 59 | D4 | 1+2T+114T2+2pT3+p2T4 |
| 61 | D4 | 1+10T+142T2+10pT3+p2T4 |
| 67 | D4 | 1+8T+70T2+8pT3+p2T4 |
| 71 | C2 | (1+10T+pT2)2 |
| 73 | D4 | 1+10T+151T2+10pT3+p2T4 |
| 79 | D4 | 1+8T+49T2+8pT3+p2T4 |
| 83 | C2 | (1+9T+pT2)2 |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | D4 | 1+10T+94T2+10pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.59465090594354315121849235360, −7.54318682309951755788940437998, −6.62487848911350690130209658946, −6.58199201198977058359789586536, −6.10059843722885251835990738507, −5.72959658414275361316010104606, −5.45131220258259683041189229071, −5.34584069501345950075555752183, −4.61512916477133518541953882121, −4.46185698311575780337723744245, −4.42578066512789798888497954002, −3.78016847130066560148602255163, −3.07031978392638603524386619879, −2.92638183571929890514770699797, −2.39976234700353712294350703988, −1.71246928549210154885746249595, −1.33977497191023249185908803634, −1.20294161615390550317929615551, 0, 0,
1.20294161615390550317929615551, 1.33977497191023249185908803634, 1.71246928549210154885746249595, 2.39976234700353712294350703988, 2.92638183571929890514770699797, 3.07031978392638603524386619879, 3.78016847130066560148602255163, 4.42578066512789798888497954002, 4.46185698311575780337723744245, 4.61512916477133518541953882121, 5.34584069501345950075555752183, 5.45131220258259683041189229071, 5.72959658414275361316010104606, 6.10059843722885251835990738507, 6.58199201198977058359789586536, 6.62487848911350690130209658946, 7.54318682309951755788940437998, 7.59465090594354315121849235360