Properties

Label 2-9200-1.1-c1-0-204
Degree $2$
Conductor $9200$
Sign $-1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.30·3-s − 2.55·7-s + 7.93·9-s + 2.72·11-s − 7.12·13-s − 0.924·17-s − 7.51·19-s − 8.43·21-s − 23-s + 16.3·27-s − 2.38·29-s − 0.866·31-s + 9.00·33-s − 0.352·37-s − 23.5·39-s + 4.34·41-s − 13.3·47-s − 0.495·49-s − 3.05·51-s − 3.99·53-s − 24.8·57-s + 3.84·59-s − 9.14·61-s − 20.2·63-s − 3.15·67-s − 3.30·69-s + 6.07·71-s + ⋯
L(s)  = 1  + 1.90·3-s − 0.963·7-s + 2.64·9-s + 0.821·11-s − 1.97·13-s − 0.224·17-s − 1.72·19-s − 1.84·21-s − 0.208·23-s + 3.13·27-s − 0.442·29-s − 0.155·31-s + 1.56·33-s − 0.0580·37-s − 3.77·39-s + 0.677·41-s − 1.94·47-s − 0.0707·49-s − 0.427·51-s − 0.548·53-s − 3.29·57-s + 0.500·59-s − 1.17·61-s − 2.54·63-s − 0.385·67-s − 0.398·69-s + 0.721·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 - 3.30T + 3T^{2} \)
7 \( 1 + 2.55T + 7T^{2} \)
11 \( 1 - 2.72T + 11T^{2} \)
13 \( 1 + 7.12T + 13T^{2} \)
17 \( 1 + 0.924T + 17T^{2} \)
19 \( 1 + 7.51T + 19T^{2} \)
29 \( 1 + 2.38T + 29T^{2} \)
31 \( 1 + 0.866T + 31T^{2} \)
37 \( 1 + 0.352T + 37T^{2} \)
41 \( 1 - 4.34T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 13.3T + 47T^{2} \)
53 \( 1 + 3.99T + 53T^{2} \)
59 \( 1 - 3.84T + 59T^{2} \)
61 \( 1 + 9.14T + 61T^{2} \)
67 \( 1 + 3.15T + 67T^{2} \)
71 \( 1 - 6.07T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 - 12.0T + 79T^{2} \)
83 \( 1 + 6.35T + 83T^{2} \)
89 \( 1 + 9.71T + 89T^{2} \)
97 \( 1 + 8.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57202223860692592644599968425, −6.64708126450777252075287957152, −6.53681241591758445568896575022, −5.04732317402108454487813222308, −4.29075212767809678857583409335, −3.75735337424898802170193554830, −2.93138060591094635251267592160, −2.35998035149417267572294165892, −1.67060054343597940841336044208, 0, 1.67060054343597940841336044208, 2.35998035149417267572294165892, 2.93138060591094635251267592160, 3.75735337424898802170193554830, 4.29075212767809678857583409335, 5.04732317402108454487813222308, 6.53681241591758445568896575022, 6.64708126450777252075287957152, 7.57202223860692592644599968425

Graph of the $Z$-function along the critical line