Properties

Label 2-9200-1.1-c1-0-86
Degree $2$
Conductor $9200$
Sign $1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.21·3-s − 2.43·7-s + 7.36·9-s + 0.884·11-s − 5.10·13-s − 0.366·17-s + 2.79·19-s − 7.82·21-s + 23-s + 14.0·27-s + 8.02·29-s − 7.24·31-s + 2.84·33-s + 3.10·37-s − 16.4·39-s − 3.47·41-s + 8.56·43-s + 5.25·47-s − 1.08·49-s − 1.18·51-s + 11.6·53-s + 9.00·57-s + 9.33·59-s + 5.46·61-s − 17.9·63-s + 1.49·67-s + 3.21·69-s + ⋯
L(s)  = 1  + 1.85·3-s − 0.919·7-s + 2.45·9-s + 0.266·11-s − 1.41·13-s − 0.0889·17-s + 0.642·19-s − 1.70·21-s + 0.208·23-s + 2.70·27-s + 1.49·29-s − 1.30·31-s + 0.495·33-s + 0.509·37-s − 2.63·39-s − 0.542·41-s + 1.30·43-s + 0.766·47-s − 0.155·49-s − 0.165·51-s + 1.59·53-s + 1.19·57-s + 1.21·59-s + 0.699·61-s − 2.25·63-s + 0.182·67-s + 0.387·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.964713211\)
\(L(\frac12)\) \(\approx\) \(3.964713211\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - 3.21T + 3T^{2} \)
7 \( 1 + 2.43T + 7T^{2} \)
11 \( 1 - 0.884T + 11T^{2} \)
13 \( 1 + 5.10T + 13T^{2} \)
17 \( 1 + 0.366T + 17T^{2} \)
19 \( 1 - 2.79T + 19T^{2} \)
29 \( 1 - 8.02T + 29T^{2} \)
31 \( 1 + 7.24T + 31T^{2} \)
37 \( 1 - 3.10T + 37T^{2} \)
41 \( 1 + 3.47T + 41T^{2} \)
43 \( 1 - 8.56T + 43T^{2} \)
47 \( 1 - 5.25T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 - 9.33T + 59T^{2} \)
61 \( 1 - 5.46T + 61T^{2} \)
67 \( 1 - 1.49T + 67T^{2} \)
71 \( 1 + 8.29T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 + 6.06T + 79T^{2} \)
83 \( 1 - 16.2T + 83T^{2} \)
89 \( 1 + 17.6T + 89T^{2} \)
97 \( 1 - 6.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71508317694001317306511141636, −7.13334605172257986739316881285, −6.77176025872556619001288668007, −5.63668737472056763514774063881, −4.71595695202722349943099533521, −3.97788267922176766607163757341, −3.32004560050133816198422575053, −2.63936661214537791133453873031, −2.13841852532439720574008517161, −0.867415862993006374865414056744, 0.867415862993006374865414056744, 2.13841852532439720574008517161, 2.63936661214537791133453873031, 3.32004560050133816198422575053, 3.97788267922176766607163757341, 4.71595695202722349943099533521, 5.63668737472056763514774063881, 6.77176025872556619001288668007, 7.13334605172257986739316881285, 7.71508317694001317306511141636

Graph of the $Z$-function along the critical line