L(s) = 1 | + 1.73·3-s − 1.73·5-s + (2 − 1.73i)7-s + 2.99·9-s − i·11-s − 5.19i·13-s − 2.99·15-s + 1.73i·19-s + (3.46 − 2.99i)21-s − 6i·23-s − 2.00·25-s + 5.19·27-s + 9i·29-s − 3.46i·31-s − 1.73i·33-s + ⋯ |
L(s) = 1 | + 1.00·3-s − 0.774·5-s + (0.755 − 0.654i)7-s + 0.999·9-s − 0.301i·11-s − 1.44i·13-s − 0.774·15-s + 0.397i·19-s + (0.755 − 0.654i)21-s − 1.25i·23-s − 0.400·25-s + 1.00·27-s + 1.67i·29-s − 0.622i·31-s − 0.301i·33-s + ⋯ |
Λ(s)=(=(924s/2ΓC(s)L(s)(0.654+0.755i)Λ(2−s)
Λ(s)=(=(924s/2ΓC(s+1/2)L(s)(0.654+0.755i)Λ(1−s)
Degree: |
2 |
Conductor: |
924
= 22⋅3⋅7⋅11
|
Sign: |
0.654+0.755i
|
Analytic conductor: |
7.37817 |
Root analytic conductor: |
2.71628 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ924(881,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 924, ( :1/2), 0.654+0.755i)
|
Particular Values
L(1) |
≈ |
1.91481−0.874785i |
L(21) |
≈ |
1.91481−0.874785i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−1.73T |
| 7 | 1+(−2+1.73i)T |
| 11 | 1+iT |
good | 5 | 1+1.73T+5T2 |
| 13 | 1+5.19iT−13T2 |
| 17 | 1+17T2 |
| 19 | 1−1.73iT−19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−9iT−29T2 |
| 31 | 1+3.46iT−31T2 |
| 37 | 1−7T+37T2 |
| 41 | 1+6.92T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1−8.66T+47T2 |
| 53 | 1−53T2 |
| 59 | 1−1.73T+59T2 |
| 61 | 1+13.8iT−61T2 |
| 67 | 1−5T+67T2 |
| 71 | 1−12iT−71T2 |
| 73 | 1−8.66iT−73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1+13.8T+83T2 |
| 89 | 1+6.92T+89T2 |
| 97 | 1−17.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07656944216168449215548605324, −8.884902018608363511758220283583, −8.118239792575951093321210441714, −7.75149155864955378651775263387, −6.86436422398206041886817471612, −5.46109175287522224955503737677, −4.34700557052699451998718203702, −3.63004634186886233667922654067, −2.55775686188934470944008093718, −0.976419698040574150863647470160,
1.66708033361650054981379488567, 2.66142579194151408955497801770, 4.02402424101348366872639697135, 4.51110622078658723638201313613, 5.87050646086395433828070532515, 7.16790430783297918888731522718, 7.68240907521243273707105426191, 8.559162039066090908781738931163, 9.199037023102744143216440081137, 9.931888685906614325762686253754