L(s) = 1 | + 1.73·3-s − 1.73·5-s + (2 − 1.73i)7-s + 2.99·9-s − i·11-s − 5.19i·13-s − 2.99·15-s + 1.73i·19-s + (3.46 − 2.99i)21-s − 6i·23-s − 2.00·25-s + 5.19·27-s + 9i·29-s − 3.46i·31-s − 1.73i·33-s + ⋯ |
L(s) = 1 | + 1.00·3-s − 0.774·5-s + (0.755 − 0.654i)7-s + 0.999·9-s − 0.301i·11-s − 1.44i·13-s − 0.774·15-s + 0.397i·19-s + (0.755 − 0.654i)21-s − 1.25i·23-s − 0.400·25-s + 1.00·27-s + 1.67i·29-s − 0.622i·31-s − 0.301i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 924 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 924 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.91481 - 0.874785i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.91481 - 0.874785i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73T \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
| 11 | \( 1 + iT \) |
good | 5 | \( 1 + 1.73T + 5T^{2} \) |
| 13 | \( 1 + 5.19iT - 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 1.73iT - 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 - 9iT - 29T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 - 7T + 37T^{2} \) |
| 41 | \( 1 + 6.92T + 41T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 - 8.66T + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 1.73T + 59T^{2} \) |
| 61 | \( 1 + 13.8iT - 61T^{2} \) |
| 67 | \( 1 - 5T + 67T^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 - 8.66iT - 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + 13.8T + 83T^{2} \) |
| 89 | \( 1 + 6.92T + 89T^{2} \) |
| 97 | \( 1 - 17.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07656944216168449215548605324, −8.884902018608363511758220283583, −8.118239792575951093321210441714, −7.75149155864955378651775263387, −6.86436422398206041886817471612, −5.46109175287522224955503737677, −4.34700557052699451998718203702, −3.63004634186886233667922654067, −2.55775686188934470944008093718, −0.976419698040574150863647470160,
1.66708033361650054981379488567, 2.66142579194151408955497801770, 4.02402424101348366872639697135, 4.51110622078658723638201313613, 5.87050646086395433828070532515, 7.16790430783297918888731522718, 7.68240907521243273707105426191, 8.559162039066090908781738931163, 9.199037023102744143216440081137, 9.931888685906614325762686253754