Properties

Label 2-9248-1.1-c1-0-205
Degree $2$
Conductor $9248$
Sign $1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.62·3-s + 0.309·5-s + 4.59·7-s + 3.87·9-s + 5.71·11-s + 1.28·13-s + 0.810·15-s + 2.73·19-s + 12.0·21-s + 1.53·23-s − 4.90·25-s + 2.28·27-s − 5.05·29-s − 4.39·31-s + 14.9·33-s + 1.42·35-s + 10.4·37-s + 3.37·39-s + 1.94·41-s − 10.1·43-s + 1.19·45-s − 10.7·47-s + 14.1·49-s + 6.19·53-s + 1.76·55-s + 7.16·57-s + 11.9·59-s + ⋯
L(s)  = 1  + 1.51·3-s + 0.138·5-s + 1.73·7-s + 1.29·9-s + 1.72·11-s + 0.356·13-s + 0.209·15-s + 0.627·19-s + 2.62·21-s + 0.319·23-s − 0.980·25-s + 0.438·27-s − 0.938·29-s − 0.789·31-s + 2.60·33-s + 0.240·35-s + 1.71·37-s + 0.540·39-s + 0.303·41-s − 1.55·43-s + 0.178·45-s − 1.56·47-s + 2.01·49-s + 0.850·53-s + 0.238·55-s + 0.949·57-s + 1.55·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.797987656\)
\(L(\frac12)\) \(\approx\) \(5.797987656\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 2.62T + 3T^{2} \)
5 \( 1 - 0.309T + 5T^{2} \)
7 \( 1 - 4.59T + 7T^{2} \)
11 \( 1 - 5.71T + 11T^{2} \)
13 \( 1 - 1.28T + 13T^{2} \)
19 \( 1 - 2.73T + 19T^{2} \)
23 \( 1 - 1.53T + 23T^{2} \)
29 \( 1 + 5.05T + 29T^{2} \)
31 \( 1 + 4.39T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 - 1.94T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 + 10.7T + 47T^{2} \)
53 \( 1 - 6.19T + 53T^{2} \)
59 \( 1 - 11.9T + 59T^{2} \)
61 \( 1 + 8.42T + 61T^{2} \)
67 \( 1 - 13.4T + 67T^{2} \)
71 \( 1 - 0.548T + 71T^{2} \)
73 \( 1 + 7.46T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 + 5.50T + 83T^{2} \)
89 \( 1 - 11.8T + 89T^{2} \)
97 \( 1 + 2.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73511111313617462549481253107, −7.39055804468747788836216786449, −6.47836750331573245781168062977, −5.59404683721818872042491945022, −4.78286298871800557881400991929, −3.93239639109568880530909139041, −3.64370362211842239977500659270, −2.50420182754364167926909714365, −1.69818247200975521275306190334, −1.28416602114394556790743163756, 1.28416602114394556790743163756, 1.69818247200975521275306190334, 2.50420182754364167926909714365, 3.64370362211842239977500659270, 3.93239639109568880530909139041, 4.78286298871800557881400991929, 5.59404683721818872042491945022, 6.47836750331573245781168062977, 7.39055804468747788836216786449, 7.73511111313617462549481253107

Graph of the $Z$-function along the critical line