Properties

Label 2-9248-1.1-c1-0-159
Degree $2$
Conductor $9248$
Sign $1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.64·3-s + 4.08·5-s − 3.94·7-s + 4.01·9-s + 3.83·11-s − 1.75·13-s + 10.8·15-s + 0.590·19-s − 10.4·21-s + 3.92·23-s + 11.7·25-s + 2.67·27-s − 8.02·29-s + 5.59·31-s + 10.1·33-s − 16.1·35-s + 6.07·37-s − 4.64·39-s + 5.95·41-s + 4.96·43-s + 16.3·45-s − 0.492·47-s + 8.53·49-s − 6.70·53-s + 15.6·55-s + 1.56·57-s + 2.72·59-s + ⋯
L(s)  = 1  + 1.52·3-s + 1.82·5-s − 1.48·7-s + 1.33·9-s + 1.15·11-s − 0.486·13-s + 2.79·15-s + 0.135·19-s − 2.27·21-s + 0.817·23-s + 2.34·25-s + 0.514·27-s − 1.48·29-s + 1.00·31-s + 1.76·33-s − 2.72·35-s + 0.999·37-s − 0.744·39-s + 0.930·41-s + 0.757·43-s + 2.44·45-s − 0.0718·47-s + 1.21·49-s − 0.920·53-s + 2.11·55-s + 0.207·57-s + 0.355·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.153119551\)
\(L(\frac12)\) \(\approx\) \(5.153119551\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 2.64T + 3T^{2} \)
5 \( 1 - 4.08T + 5T^{2} \)
7 \( 1 + 3.94T + 7T^{2} \)
11 \( 1 - 3.83T + 11T^{2} \)
13 \( 1 + 1.75T + 13T^{2} \)
19 \( 1 - 0.590T + 19T^{2} \)
23 \( 1 - 3.92T + 23T^{2} \)
29 \( 1 + 8.02T + 29T^{2} \)
31 \( 1 - 5.59T + 31T^{2} \)
37 \( 1 - 6.07T + 37T^{2} \)
41 \( 1 - 5.95T + 41T^{2} \)
43 \( 1 - 4.96T + 43T^{2} \)
47 \( 1 + 0.492T + 47T^{2} \)
53 \( 1 + 6.70T + 53T^{2} \)
59 \( 1 - 2.72T + 59T^{2} \)
61 \( 1 + 6.67T + 61T^{2} \)
67 \( 1 - 0.855T + 67T^{2} \)
71 \( 1 + 0.354T + 71T^{2} \)
73 \( 1 + 2.28T + 73T^{2} \)
79 \( 1 - 10.1T + 79T^{2} \)
83 \( 1 - 4.26T + 83T^{2} \)
89 \( 1 + 1.77T + 89T^{2} \)
97 \( 1 - 3.42T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64043074517587111575326444547, −7.04133342096220967779465730961, −6.25301468867861553254179131853, −6.00770353213200839487205973747, −4.91774776398066954572386053479, −3.95472643448962048968236873273, −3.19525051816151731389447605271, −2.64375549030295280296803145627, −2.00876113756404520875665167001, −1.05585256452295787704717689366, 1.05585256452295787704717689366, 2.00876113756404520875665167001, 2.64375549030295280296803145627, 3.19525051816151731389447605271, 3.95472643448962048968236873273, 4.91774776398066954572386053479, 6.00770353213200839487205973747, 6.25301468867861553254179131853, 7.04133342096220967779465730961, 7.64043074517587111575326444547

Graph of the $Z$-function along the critical line