Properties

Label 2-9248-1.1-c1-0-228
Degree $2$
Conductor $9248$
Sign $-1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.64·3-s − 3.30·5-s + 3.78·7-s − 0.302·9-s + 5.42·11-s − 4.90·13-s − 5.42·15-s − 1.64·19-s + 6.21·21-s + 3.78·23-s + 5.90·25-s − 5.42·27-s − 3.69·29-s − 5.42·31-s + 8.90·33-s − 12.4·35-s − 4·37-s − 8.06·39-s + 9.21·41-s + 1.14·43-s + 1.00·45-s − 11.9·47-s + 7.30·49-s − 12.9·53-s − 17.9·55-s − 2.69·57-s − 15.1·59-s + ⋯
L(s)  = 1  + 0.948·3-s − 1.47·5-s + 1.42·7-s − 0.100·9-s + 1.63·11-s − 1.36·13-s − 1.40·15-s − 0.376·19-s + 1.35·21-s + 0.788·23-s + 1.18·25-s − 1.04·27-s − 0.686·29-s − 0.974·31-s + 1.55·33-s − 2.11·35-s − 0.657·37-s − 1.29·39-s + 1.43·41-s + 0.174·43-s + 0.149·45-s − 1.74·47-s + 1.04·49-s − 1.77·53-s − 2.41·55-s − 0.357·57-s − 1.96·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 1.64T + 3T^{2} \)
5 \( 1 + 3.30T + 5T^{2} \)
7 \( 1 - 3.78T + 7T^{2} \)
11 \( 1 - 5.42T + 11T^{2} \)
13 \( 1 + 4.90T + 13T^{2} \)
19 \( 1 + 1.64T + 19T^{2} \)
23 \( 1 - 3.78T + 23T^{2} \)
29 \( 1 + 3.69T + 29T^{2} \)
31 \( 1 + 5.42T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 - 9.21T + 41T^{2} \)
43 \( 1 - 1.14T + 43T^{2} \)
47 \( 1 + 11.9T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 + 15.1T + 59T^{2} \)
61 \( 1 - 0.211T + 61T^{2} \)
67 \( 1 - 6.56T + 67T^{2} \)
71 \( 1 - 6.56T + 71T^{2} \)
73 \( 1 - 2.21T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 8.21T + 83T^{2} \)
89 \( 1 + 5.21T + 89T^{2} \)
97 \( 1 + 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45000907203775447530139209543, −7.13481086751710502370967596820, −6.06873692220141279125288928178, −4.92578435757876080124996041693, −4.55143672505025554605310790368, −3.76107815986193213612582381865, −3.22858292739093965260504199586, −2.16822797539758946449981458077, −1.39669710122834918693589320928, 0, 1.39669710122834918693589320928, 2.16822797539758946449981458077, 3.22858292739093965260504199586, 3.76107815986193213612582381865, 4.55143672505025554605310790368, 4.92578435757876080124996041693, 6.06873692220141279125288928178, 7.13481086751710502370967596820, 7.45000907203775447530139209543

Graph of the $Z$-function along the critical line