Properties

Label 2-9248-1.1-c1-0-248
Degree $2$
Conductor $9248$
Sign $-1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·3-s + 0.302·5-s − 3.27·7-s + 3.30·9-s − 0.760·11-s + 5.90·13-s + 0.760·15-s − 2.51·19-s − 8.21·21-s − 3.27·23-s − 4.90·25-s + 0.760·27-s − 7.30·29-s + 0.760·31-s − 1.90·33-s − 0.990·35-s − 4·37-s + 14.8·39-s − 5.21·41-s + 10.8·43-s + 1.00·45-s − 9.28·47-s + 3.69·49-s − 2.09·53-s − 0.230·55-s − 6.30·57-s + 13.0·59-s + ⋯
L(s)  = 1  + 1.44·3-s + 0.135·5-s − 1.23·7-s + 1.10·9-s − 0.229·11-s + 1.63·13-s + 0.196·15-s − 0.575·19-s − 1.79·21-s − 0.681·23-s − 0.981·25-s + 0.146·27-s − 1.35·29-s + 0.136·31-s − 0.332·33-s − 0.167·35-s − 0.657·37-s + 2.37·39-s − 0.813·41-s + 1.64·43-s + 0.149·45-s − 1.35·47-s + 0.528·49-s − 0.287·53-s − 0.0310·55-s − 0.834·57-s + 1.70·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 2.51T + 3T^{2} \)
5 \( 1 - 0.302T + 5T^{2} \)
7 \( 1 + 3.27T + 7T^{2} \)
11 \( 1 + 0.760T + 11T^{2} \)
13 \( 1 - 5.90T + 13T^{2} \)
19 \( 1 + 2.51T + 19T^{2} \)
23 \( 1 + 3.27T + 23T^{2} \)
29 \( 1 + 7.30T + 29T^{2} \)
31 \( 1 - 0.760T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 + 5.21T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 + 9.28T + 47T^{2} \)
53 \( 1 + 2.09T + 53T^{2} \)
59 \( 1 - 13.0T + 59T^{2} \)
61 \( 1 + 14.2T + 61T^{2} \)
67 \( 1 - 10.0T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 + 12.2T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 - 9.21T + 89T^{2} \)
97 \( 1 - 1.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55136281044864236796945839313, −6.68919664159585102899418555070, −6.12299807229440494170976985402, −5.47576507150185901664982955170, −4.10497643162246986284061540478, −3.71692763219783463287074893044, −3.14722930603667081202463390783, −2.28860168945865854548131264823, −1.53748178592283272500342161625, 0, 1.53748178592283272500342161625, 2.28860168945865854548131264823, 3.14722930603667081202463390783, 3.71692763219783463287074893044, 4.10497643162246986284061540478, 5.47576507150185901664982955170, 6.12299807229440494170976985402, 6.68919664159585102899418555070, 7.55136281044864236796945839313

Graph of the $Z$-function along the critical line